Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tạ Đức Quý
Xem chi tiết
shitbo
9 tháng 6 2021 lúc 17:52

Đặt: \(\frac{\left(n-23\right)}{n+89}=\frac{a^2}{b^2}\)(với a,b là 2 số nguyên dương và (a,b)=1)).

Gọi d=(n-23,n+89)\(\Rightarrow n+89-\left(n-23\right)=112⋮d\). Do đó d chỉ có thể có các ước nguyên tố là 2 và 7.

Nếu d chia hết cho 7 thì: Đặt n=7k+2 ( với k là số nguyên dương). Suy ra: \(\frac{\left(n-23\right)}{n+89}=\frac{7k-21}{7k+91}=\frac{k-3}{k+13}\).

Đến đây xét vài trường hợp nữa bài này có dạng tìm k biết \(k+a,k+b\) đều là số chính phương.

Khách vãng lai đã xóa
Van Xuân Trần
Xem chi tiết
Tạ Đức Quý
Xem chi tiết
Tạ Đức Quý
8 tháng 6 2021 lúc 23:41

nhầm là n+89

Khách vãng lai đã xóa
Vân Trần Thị
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2019 lúc 21:06

\(\frac{n-17}{n-23}=k^2\Leftrightarrow n-17=k^2n-23k^2\)

\(\Leftrightarrow n\left(k^2-1\right)=23k^2-17\Leftrightarrow n=\frac{23k^2-17}{k^2-1}=23+\frac{6}{k^2-1}\)

\(\Rightarrow k^2-1=Ư\left(6\right)=\left\{-1;1;2;3;6\right\}\)

\(k^2-1=-1\Rightarrow k^2=0\Rightarrow n=17\)

\(k^2-1=1\Rightarrow k^2=2\) (ko tồn tại k hữu tỉ)

\(k^2-1=3\Rightarrow k^2=4\Rightarrow n=25\)

\(k^2-1=2\Rightarrow k^2=3\left(ktm\right)\)

\(k^2-1=6\Rightarrow k^2=7\left(ktm\right)\)

Vậy \(n=\left\{17;25\right\}\)

Bạn nên thêm các điều kiện mẫu khác 0 vào cho chặt chẽ hơn

nguyen hai Yen
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết
Trần Phan Hồng Phúc
17 tháng 9 2017 lúc 12:54

a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)

\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)

\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)

*\(n+3=1\Rightarrow n=-2\)

*\(n+3=-1\Rightarrow n=-4\)

*\(n+3=11\Rightarrow n=8\)

*\(n+3=-11\Rightarrow n=-14\)

nguyentancuong
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
30 tháng 8 2019 lúc 11:15

Đặt \(a-b=x;b-c=y;c-a=z\)

\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)

Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)

\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

Ngọc minh minh Đỗ
Xem chi tiết
Phan Trung Ngoc
Xem chi tiết
QuocDat
15 tháng 1 2018 lúc 20:49

\(\frac{1}{8}.16^n=2^n\)

\(\frac{16^n}{8}=2^n\)

\(\frac{\left(2^4\right)^n}{2^3}=2^n\)

\(\frac{2^{4n}}{2^3}=2^n\)

=> 23=24n:2n

23=23n

=> 3n=3

=> n=1