\(\left(\sqrt{3}+4\right)\sqrt{19-8\sqrt{3}}+\left(\sqrt{3}-4\right)\sqrt{19+8\sqrt{3}}\)
1. Tính ( rút gọn)
a)\(\sqrt{\left(5-\sqrt{19}\right)^2}-\sqrt{\left(4-\sqrt{19}\right)^2}\)
b)\(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(2\sqrt{2}-3\right)^2}\)
c)\(\sqrt{8+2\sqrt{15}}+\sqrt{\left(\sqrt{2-\sqrt{5}}\right)^2}\)
d)\(\sqrt{12+6\sqrt{3}}.\left(3+\sqrt{3}\right)\)
e) \(\left(2-\sqrt{5}\right).\sqrt{9+4\sqrt{5}}\)
a: Ta có: \(\sqrt{\left(5-\sqrt{19}\right)^2}-\sqrt{\left(4-\sqrt{19}\right)^2}\)
\(=5-\sqrt{19}-\sqrt{19}+4\)
\(=9-2\sqrt{19}\)
b: Ta có: \(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(2\sqrt{2}-3\right)^2}\)
\(=3-2\sqrt{2}-3+2\sqrt{2}\)
=0
c.
Căn bậc 2 không xác định do $2-\sqrt{5}< 0$
d.
\(=\sqrt{(3+\sqrt{3})^2}(3+\sqrt{3})=|3+\sqrt{3}|(3+\sqrt{3})=(3+\sqrt{3})^2=12+6\sqrt{3}\)
e.
\(=(2-\sqrt{5})\sqrt{(2+\sqrt{5})^2}=(2-\sqrt{5})|2+\sqrt{5}|=(2-\sqrt{5})(2+\sqrt{5})=4-5=-1\)
có ai biết giải bài này k hộ mình vs ( giải chi tiết hộ mình nhé)
1, \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)
2, \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
3, \(\sqrt{8+\sqrt{60}}+\sqrt{45}-\sqrt{12}\)
4, \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=\left(\sqrt{19}\right)^2-3^2=19-9=10\)
2) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\sqrt{\dfrac{8+2\sqrt{7}}{2}}-\sqrt{\dfrac{8-2\sqrt{7}}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}=\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1}{\sqrt{2}}-\dfrac{\sqrt{7}-1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
3) \(\sqrt{8+\sqrt{60}}+\sqrt{45}-\sqrt{12}=\sqrt{8+\sqrt{4.15}}+\sqrt{9.5}-\sqrt{4.3}\)
\(=\sqrt{8+2\sqrt{15}}+3\sqrt{5}-2\sqrt{3}\)
\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}=\left|\sqrt{5}+\sqrt{3}\right|+3\sqrt{5}-2\sqrt{3}\)
\(\sqrt{5}+\sqrt{3}+3\sqrt{5}-2\sqrt{3}=4\sqrt{5}-\sqrt{3}\)
4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}\right)^2-2.2.\sqrt{5}+2^2}-\sqrt{\left(\sqrt{5}\right)^2+2.2.\sqrt{5}+2^2}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)
\(=\sqrt{5}-2-\sqrt{5}-2=-4\)
1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=19-9=10\)
4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{5}-2-\sqrt{5}-2=-4\)
Tính:
a,y=2\(+\sqrt{17-4\sqrt{9}+4\sqrt{5}}\)
b,t=\(\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right)\)
c,x=\(\sqrt{19+8\sqrt{3}}+\sqrt{19-8\sqrt{3}}\)
b, t = \(\sqrt{3- \sqrt{5}}\)(3 +\(\sqrt{5}\)).(\(\sqrt{10}\)-\(\sqrt{2}\))
t = \(\sqrt{3- \sqrt{5}}\)(3 +\(\sqrt{5}\)).\(\sqrt{2}\)(\(\sqrt{5}\) -1)
t = (\(\sqrt{5}\) -1).(\(\sqrt{5}\) -1).(3 +\(\sqrt{5}\))
t = (\(\sqrt{5}\) -1)2.(3 +\(\sqrt{5}\))
t = (5 - \(2\sqrt{5}\)+1).(3 +\(\sqrt{5}\))
t = 15 + \(5\sqrt{5}\) \(-6\sqrt{5}\)-10+1+\(\sqrt{5}\)
t = 6
Rút gọn biểu thức:
a)\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}\)
b)\(\sqrt{\left(\sqrt{3}+4\right)\sqrt{19-8\sqrt{3}}+3}\)
\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(4\sqrt{3}+\sqrt{5}\right)^2}\)
\(=2\sqrt{2}-\sqrt{5}-4\sqrt{3}-\sqrt{5}\)
\(=2\sqrt{2}-4\sqrt{3}-2\sqrt{5}\)
\(\sqrt{\left(4+\sqrt{3}\right)\sqrt{19-8\sqrt{3}}+3}=\sqrt{\left(4+\sqrt{3}\right)\sqrt{\left(4-\sqrt{3}\right)^2}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)+3}=\sqrt{4-3+3}=2\)
a) Ta có: \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}\)
\(=2\sqrt{2}-\sqrt{5}-4\sqrt{3}+\sqrt{5}\)
\(=2\sqrt{2}-4\sqrt{3}\)
b) Ta có: \(\sqrt{\left(4+\sqrt{3}\right)\cdot\sqrt{19-8\sqrt{3}+3}}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)+3}\)
=4
\(\sqrt{\left(2\sqrt{3}-4\right)^2}-\sqrt{19-8\sqrt{3}}\)
giuúp mình với
\(\left|2\sqrt{3}-4\right|-\sqrt{\left(\sqrt{16}-\sqrt{3}\right)^2}=4-2\sqrt{3}-\left|\sqrt{16}-\sqrt{3}\right|=4-2\sqrt{3}-4+\sqrt{3}=-\sqrt{3}\)
Tính : a) \(8-2\sqrt{15}-\sqrt{6-2\sqrt{5}+\sqrt{3}}\)
b) \(\sqrt{19+8\sqrt{3}}+\sqrt{\left(4+2\sqrt{3}\right).\left(5-2\sqrt{3}\right)}\)
Rút gọn:
a) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
b) \(\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
c) \(\dfrac{3}{2\sqrt{3}+3}+\dfrac{3}{2\sqrt{3}-3}\)
d) \(\sqrt{\left(\sqrt{3}+4\right)\sqrt{19-8\sqrt{3}}+3}\)
e) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
a: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
b: \(\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|\)
\(=3+\sqrt{5}+3-\sqrt{5}=6\)
c: \(\dfrac{3}{2\sqrt{3}+3}+\dfrac{3}{2\sqrt{3}-3}\)
\(=\dfrac{3\left(2\sqrt{3}-3\right)+3\left(2\sqrt{3}+3\right)}{12-9}\)
\(=2\sqrt{3}-3+2\sqrt{3}+3=4\sqrt{3}\)
d: \(\sqrt{\left(\sqrt{3}+4\right)\cdot\sqrt{19-8\sqrt{3}}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\sqrt{\left(4-\sqrt{3}\right)^2}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\left(4-\sqrt{3}\right)+3}\)
\(=\sqrt{16-3+3}=\sqrt{16}=4\)
e: \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
\(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3\left(3-\sqrt{6}\right)}{3}\)
\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=3-\dfrac{\sqrt{6}}{2}\)
Tính
a) \(8-2\sqrt{15}-\sqrt{6-2\sqrt{5}+\sqrt{3}}\)
b) \(\sqrt{19+8\sqrt{3}}+\sqrt{\left(4+2\sqrt{3}\right).\left(5-2\sqrt{3}\right)}\)
c) \(2+\sqrt{17-4\sqrt{9}+4\sqrt{9}}\)
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(=\sqrt{2}-1-3-\sqrt{2}\)
=-4
b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)
\(=3\sqrt{3}+1\)
c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)
\(=3\sqrt{5}-6\)
d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)
\(=\sqrt{7}-2+4-\sqrt{7}+8\)
=10