A=1/2.5+1/5.8+1/8.11+....+1/92/95+1/95/98
A=1/2*5 + 1/5*8 + 1/8*11 + ... + 1/92*95 + 1/95*98
Ta có:\(A=\dfrac{1}{2}-\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3}{8}+\dfrac{3}{8}-\dfrac{4}{11}+...+\dfrac{31}{92}-\dfrac{32}{95}+\dfrac{32}{95}-\dfrac{33}{98}\)
\(=\dfrac{1}{2}+\dfrac{33}{98}=\dfrac{82}{98}=\dfrac{41}{49}\)
Ta có: \(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{92\cdot95}+\dfrac{1}{95\cdot98}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{92\cdot95}+\dfrac{3}{95\cdot98}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{98}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)
\(=\dfrac{8}{49}\)
A= 1/2.5 + 1/5.8 + 1/8.11 + .....+ 1/150.153
tham khảo ở đây nha
https://olm.vn/hoi-dap/detail/222956295982.html
\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{150}-\dfrac{1}{153}\right)\)
\(=\dfrac{1}{3}.\dfrac{151}{306}=\dfrac{151}{918}\)
1/2×5+1/5×8+1/8×11+...+1/92×95+1/95×98
=1/3(3/2*5+3/5*8+...+3/95*98)
=1/3(1/2-1/5+1/5-1/8+...+1/95-1/98)
=1/3*96/196
=32/196
=8/49
\(A=1/2*5+1/5*8+1/8*11+...+1/92*95+95*98\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{95.98}\)
=> 3A = \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{95.98}\)
=> 3A = \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\)
=> 3A = \(\frac{1}{2}-\frac{1}{98}\)
=> 3A = \(\frac{24}{49}\)
=> A = \(\frac{8}{49}\)
\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\)
\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)=\frac{1}{3}\cdot\frac{24}{49}=\frac{8}{49}\)
Sửa 95.98 thành 1/(95.98) nhá
Ta có
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\)
\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\)
\(3A=\frac{1}{2}-\frac{1}{98}\)
\(3A=\frac{49}{98}-\frac{1}{98}\)
\(3A=\frac{48}{98}=\frac{24}{49}\)
\(A=\frac{24}{49}\div3\)
\(A=\frac{8}{49}\)
Hok Tốt !!!!!!!!!!!!!!!!!!!!!!
A= 1/2.5+1/5.8 + 1/8.11 +........ 1/152.155
A =1/2.5 + 1/5.8 + 1/8.11 + .... 1/152.155 = ?
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{152.155}\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{152}-\frac{1}{155}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{155}\right)\)
\(A=\frac{1}{3}.\frac{153}{310}\)
\(A=\frac{51}{310}\)
A=1/2.5+1/5.8+1/8.11+...+1/92.95+1/95.98
3A = \(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{92.95}+\frac{3}{95.98}\)
3A=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)
3A=\(\frac{1}{2}-\frac{1}{98}\)
3A=\(\frac{98}{196}-\frac{2}{196}\)=\(\frac{96}{196}=\frac{24}{49}\)
A=\(\frac{24}{49}:3=\frac{24}{49}.\frac{1}{3}=\frac{8}{49}\)
Vậy A = \(\frac{8}{49}\)
\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\)
\(\Rightarrow3A=3\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\right)\)
\(\Rightarrow3A=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{98}\)
\(\Rightarrow3A=\frac{24}{49}\)
\(\Rightarrow A=\frac{24}{49}:3\)
\(\Rightarrow A=\frac{8}{49}\)
Vậy \(A=\frac{8}{49}\)
\(A=3.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{95.98}\right)\)
\(=3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)
\(=3.\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(=3.\frac{24}{49}\)
\(=\frac{72}{49}\)
b=1/2.5+1/5.8+1/8.11+...+1/92.95
A = 1/2.5 + 1/5.8 + 1/8.11 + ... + 1/92.95 + 1/95.98
A = 1/3 . ( 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/92.95 + 3/95.98 )
A = 1/3 . ( 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/92 - 1/95 + 1/95 - 1/98 )
A = 1/3 . ( 1/2 - 1/98 )
A = 1/3 . 24/49
A = 8/49 tick cho tui
D=1/2.5+1/5.8+1/8.11+...+1/1979.1982
`D=1/2.5+1/5.8+1/8.11+...+1/1979.1982`
`=3/3(1/2.5+1/5.8+1/8.11+...+1/1979.1982)`
`=1/3(3/2.5+3/5.8+3/8.11+...+3/1979.1982)`
`=1/3(1/2-1/5+1/5-1/8+1/8-1/11+...+1/1979-1/1982)`
`=1/3(1/2-1/1982)`
`=1/3(991/1982-1/1982)`
`=1/3 . 495/991`
`=165/991`