Cho A=1/10+1/15+1/21+...+1/120
hãy chứng minh rằng A<1
Cho M= \(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{1}{105}+\dfrac{1}{120}\). Chứng minh rằng: \(\dfrac{1}{3}< M< \dfrac{1}{2}\)
\(M=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{105}+\dfrac{1}{120}\)
\(M=2.\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)
\(M=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{15.16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(M=2.\dfrac{3}{16}\)
\(M=\dfrac{3}{8}\)
Vậy \(\dfrac{1}{3}< M< \dfrac{1}{2}\)
1,Chứng minh rằng: 1<1/5+1/6+1/7+....+1/17<2
2,Cho A=1/2× 3/4×5/6×....×99/100
Chứng minh rằng 1/15<A<1/10
Cho A=1/2.3/4.5/6...99/100. Chứng minh rằng 1/15<A<1/10
Cho A= 1/2.3/4.5/6....99/100. Chứng minh rằng: 1/15 < A < 1/10
Để chứng minh A<1/10 thì ta chứng minh A<2/3.4/5.6/7....100/101
Để chứng minh A>1/15 thì ta chứng minh A>1/2.2/3.4/5.98/99
a: Chứng tỏ rằng tổng sau lớn hơn 1
A= 1/10+1/11+1/12+...+1/99+1/100
b: Cho tổng S= 1/21+1/22+...+1/35. Chứng minh rằng S>1/2
MK CẦN GẤP NHA! AI NHANH MK TICK CHO
a: Ta có
A = \(\dfrac{1}{10}\) + \((\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + ...+ \(\dfrac{1}{100}\)\()\)
⇒ A > \(\dfrac{1}{10}\) + \((\dfrac{1}{100}\) + \(\dfrac{1}{100}\) + ...+ \(\dfrac{1}{100}\)\()\)90 số hạng
⇒ A > \(\dfrac{1}{10}\) + \(\dfrac{90}{100}\)
⇒ A > 1
vậy A > 1
b: ta có
S = (\(\dfrac{1}{21}\) + \(\dfrac{1}{22}\)+ \(\dfrac{1}{23}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{26}\) + \(\dfrac{1}{27}\)+ \(\dfrac{1}{28}\) + \(\dfrac{1}{29}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{31}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{33}\) + \(\dfrac{1}{34}\) + \(\dfrac{1}{35}\))
⇒ S > (\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\)+ \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\)+ \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\)+ \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\))
⇔ S > \(\dfrac{5}{25}\)+\(\dfrac{5}{30}\)+\(\dfrac{5}{35}\)
⇔ S > \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{7}\)
⇔ S > \(\dfrac{107}{210}\)> \(\dfrac{105}{210}\)=\(\dfrac{1}{2}\)
vậy S > \(\dfrac{1}{2}\)
Cho A = 1/2.3/4.5/6.........99/100
Chứng minh rằng 1/15 < A >1/10
a:Chứng tỏ rằng tổng sau lớn hơn 1
A= 1/10+1/11+1/12+...+1/99+1/100
b: Cho S= 1/21+1/22+...+1/35. Chứng minh rằng S>1/2
Cho A= 1/2.3/4.5/6....99/100
Chứng minh rằng 1/15 bé hơn A bé hơn 1/10
\(Cho A= 1/2.3/4.5/6....99/100. Chứng minh rằng: 1/15 < A < 1/10\)