\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{120}\)
Ta có :
\(\frac{1}{10}< 1\)
\(\frac{1}{15}< 1\)
\(\frac{1}{21}< 1\)
........................
\(\frac{1}{120}< 1\)
\(\Rightarrow\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}< 1\)
\(\Rightarrow A< 1\)( đpcm)
Ta có : A = \(\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
= \(\frac{1}{20}\times2+\frac{1}{30}\times2+...+\frac{1}{240}\times2\)
= \(2\times\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)
= \(2\times\left(\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{15\times16}\right)\)
= \(2\times\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
= \(2\times\left(\frac{1}{4}-\frac{1}{16}\right)\)
= \(2\times\frac{3}{16}\)
= \(\frac{3}{8}\)< 1
=> A < 1