Tìm số tự nhiên \(\overline{ab}\) sao cho: \(\overline{ab}\)2 = \(\overline{abcd}\) ; trong đó c, d là các chữ số.
Bài 1: Tìm 2 số tự nhiên mà tổng và tích của chúng đều là số nguyên tố.
Bài 2: Thay các chữ bởi các chữ số thích hợp:
\(\overline{ab}.\overline{cd}=\overline{ddd}\)
Bài 1: Gọi hai số cần tìm là a và b.
Do tích ab là số nguyên tố nên một trong hai số là số 1. Số còn lại là một số nguyên tố. Coi b = 1 và a là số nguyên tố.
Khi đó tổng của hai số là a + 1.
Để a và a + 1 đều là số nguyên tố thì a = 1. Vậy hai số cần tìm là 1 và 2.
Bài 2: Ta có:
\(\overline{ab}.\overline{cd}=\overline{ddd}\Leftrightarrow\overline{ab}.\overline{cd}=d.111=d.3.37\)
Do 37 là số nguyên tố nên hoặc ab hoặc cd phải chia hết cho 37. Ta giả sử đó là ab
Do ab là số có hai chữ số nên ab = 37 hoặc 74
TH1: \(\overline{ab}=37\Rightarrow37.\overline{cd}=d.3.37\Rightarrow\overline{cd}=3d\)
\(\Rightarrow10c=2d\Rightarrow5c=d\Rightarrow c=1;d=5\)
Ta có 37.15 = 555
TH2: \(\overline{ab}=74\Rightarrow74.\overline{cd}=d.3.37\Rightarrow2.\overline{cd}=3d\)
\(\Rightarrow20c=d\) (Loại)
Vậy ta có phép tính: 37.15 = 555
Tìm số tự nhiên có 3 chữ số \(\overline{abc}\), biết b2 = a . c và \(\overline{abc}-\overline{cba}=495\)
http://olm.vn/hoi-dap/question/476913.html
coi link trên nha
Từ đề bài, ta có: (100a+10b+c)-(100c+10b+a)= 495 và a.c=b^2.
=> 99(a-c)=495. => a-c=5 và a.c=b^2.
-Nếu a=5: => c=0=> a.c=0=b^2.
=> b=0.
-Nếu a=6: => c=1=> b^2=1.6=6.(Loại do 6 không phải là số chính phương).
-Tương tự với a=7;c=2 và a=8;c=3.(Loại).
-Nếu a=9=> c=4 =>b^2= a.c=9.4=36 =6^2.
=> b=6( Do b thuộc N).
Vậy số có 3 chữ số cần tìm là 500 và 964.
\(\overline{abc}-\overline{cba}=495\)
=>100a+10b+c-100c-10b-a=495
=>99a-99c=495
=>99.(a-c)=495
=>a-c=5
Như vậy a chỉ có thể dao động từ 5->9
Khi a=5 =>c=0 =>b=0 (nhận)
Khi a=6 =>c=1=>b=\(\sqrt{6}\)(loại)
Khi a=7 =>c=2 =>b=\(\sqrt{14}\)(loại)
Khi a=8=>c=3 =>b=\(2\sqrt{6}\)(loại)
Khi: a=9=>c=4=>b=6(nhận)
Vậy \(\overline{abc}\) là số 500 hoặc 964
Tìm số tự nhiên \(\overline{abc}\), biết rằng :
1 + 2 + 3 + .......+ \(\overline{bc}\)= \(\overline{abc}\)
Tìm số tự nhiên có 3 chữ số \(\overline{abc}\), biết \(\overline{abc}:11=a+b+c\).
Tìm số tự nhiên có 2 chữ số ab khi biết 2b3 = \(\frac{3}{4}.\overline{3ab}\)
tìm số tự nhiên cs 3 chữ số \(\overline{xyz}\) biết : \(\dfrac{x^2}{4}\) =\(\dfrac{y^2}{9}\)=\(\dfrac{z^2}{25}\) và x-y+z =4
Ta có: \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}=\dfrac{x^2}{2^2}=\dfrac{y^2}{3^2}=\dfrac{z^2}{5^2}\rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/5=(x-y+z)/(2-3+5)=4/4=1`
`-> x/2=y/3=z/5=1`
`-> x=2*1=2, y=3*1=3, z=5*1=5`
=>x/2=y/3=z/5 và x-y+z=4
Áp dụng tính chất của DTSBN, ta được:
x/2=y/3=z/5=(x-y+z)/(2-3+5)=4/4=1
=>x=2; y=3; z=5
Ta có: \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Rightarrow\dfrac{x}{2}=1\Rightarrow x=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3\)
\(\dfrac{z}{5}=1\Rightarrow z=5\)
Vậy x =2; y =3; z =5
cho các số cs 2 chữ số \(\overline{ab}\) ,\(\overline{bc}\) thỏa mãn \(\dfrac{\overline{ab}}{\overline{bc}}\) =\(\dfrac{b}{c}\) (c\(\ne0\) )
c/mr:\(\dfrac{a^2+b^2}{b^2+c^2}\) =\(\dfrac{a}{c}\)
=>\(\dfrac{10a+b}{10b+c}=\dfrac{b}{c}\)
=>10ac+bc=10b^2+bc
=>ac=b^2
=>a/b=b/c=k
=>a=bk; b=ck
=>a=ck^2; b=ck
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{c^2k^4+c^2k^2}{c^2k^2+c^2}=k^2\)
\(\dfrac{a}{c}=\dfrac{ck^2}{c}=k^2\)
=>\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
Bài 1:Chứng minh rằng
a) \(\overline{ab}\) = 2.\(\overline{cd}\) → \(\overline{abcd}\) ⋮ 67
b) Cho \(\overline{abc⋮27}\) chứng minh rằng \(\overline{bca}\) ⋮ 27
Bài 2: Chứng minh rằng: Nếu \(\overline{ab}\) + \(\overline{cd}\) ⋮11 thì \(\overline{abcd}\) ⋮11
Bài 1:
a)
\(\overline{abcd}=100\overline{ab}+\overline{cd}\)
\(=100.2\overline{cd}+\overline{cd}\)
\(=201\overline{cd}\)
Mà \(201⋮67\)
\(\Rightarrow\overline{abcd}⋮67\)
b)
\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)
\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)
\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)
\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)
\(\Rightarrow\overline{bca}⋮27\)
Bài 2:
\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)
\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)
\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)
Mà \(11⋮11\)
\(\Rightarrow\overline{ab}.11.9⋮11\)
\(\Rightarrow\overline{abcd}⋮11\).
Các bạn giải nhanh cho mình nhé. Thanks!
Cho hình vuông ABCD cạnh a . Tính P=\((\overline{AB} +\overline{AC})(\overline{BC}+\overline{BD}+\overline{AB})\)