Câu này làm thế nào ạ?
Đề: Cho dãy số:\(\left\{{}\begin{matrix}u_1=4\\u_{n+1}=u_n+n\end{matrix}\right.\). Tìm số hạng thứ 5 của dãy số.
Cho dãy số \(\left(u_n\right)\)thỏa mãn: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{2u_n}{u_n+4},n\ge1\end{matrix}\right.\)
Tìm công thức số hạng tổng quát của \(\left(u_n\right)\)
\(u_{n+1}=\dfrac{2u_n}{u_n+4}\Leftrightarrow\dfrac{1}{u_{n+1}}=\dfrac{1}{2}+\dfrac{2}{u_n}\)
Đặt \(v_n=\dfrac{1}{u_n}\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}=2v_n+\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}+\dfrac{1}{2}=2\left(v_n+\dfrac{1}{2}\right)\end{matrix}\right.\)
Đặt \(v_n+\dfrac{1}{2}=x_n\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{3}{2}\\x_{n+1}=2x_n\end{matrix}\right.\)
\(\Rightarrow x_n\) là CSN với công bội 2 \(\Rightarrow x_n=\dfrac{3}{2}.2^{n-1}=3.2^{n-2}\)
\(\Leftrightarrow v_n=x_n-\dfrac{1}{2}=3.2^{n-2}-\dfrac{1}{2}\)
\(\Rightarrow u_n=\dfrac{1}{v_n}=\dfrac{1}{3.2^{n-2}-\dfrac{1}{2}}=\dfrac{2}{3.2^{n-1}-1}\)
Cho \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=2u_n+6\end{matrix}\right.\)
Tìm số hạng tổng quát của dãy số sau
Tìm số hạng tổng quát của dãy số: \(\left\{{}\begin{matrix}u_1=2018;u_2=2019\\u_n.\left(u_{n-1}+u_{n+1}\right)=2.u_{n-1}.u_{n+1}\end{matrix}\right.\)
Tìm số hạng tổng quát của dãy số: \(\left\{{}\begin{matrix}u_1=2018;u_2=2019\\u_n.\left(u_{n-1}+u_{n+1}\right)=2.u_{n-1}.u_{n+1}\end{matrix}\right.\)
Cho dãy số xác định bởi: \(\left(u_n\right)\left\{{}\begin{matrix}u_1=\sqrt{2851}\\\left(u_{n+1}\right)^2=u_n^2+n\end{matrix}\right.\) , \(n\ge1,n\in N^{\cdot}\)
Số hạng thứ 2020 của dãy là bao nhiêu?
Đặt \(v_n=u_n^2\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}=v_n+n\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}-\dfrac{1}{2}\left(n+1\right)^2+\dfrac{1}{2}\left(n+1\right)=v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n\end{matrix}\right.\)
Đặt \(v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n=x_n\Rightarrow\left\{{}\begin{matrix}x_1=2851\\x_{n+1}=x_n=...=x_1=2851\end{matrix}\right.\)
\(\Rightarrow v_n=\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851\)
\(\Rightarrow u_n=\sqrt{\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851}\Rightarrow u_{2020}=1429\)
Cho dãy số \(\left(u_n\right)\) xác định bởi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{u_n+1}{2}\end{matrix}\right.\) với \(n\ge1\)
a, Viết 4 số hạng đầu của dãy số
b, Chứng minh rằng \(u_n>1\) với \(n\ge1\)
c, Tìm CTTQ của dãy
Tìm số hạng tổng quát của dãy số: \(\left\{{}\begin{matrix}u_1=2018;u_2=2019\\u_n.\left(u_{n-1}+u_{n+1}\right)=2u_{n-1}.u_{n+1}\end{matrix}\right.\)
cho dãy số (un) thỏa mãn: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{n\left(u_n+2\right)+n^2+1}{n+1}\end{matrix}\right.\)
tìm số hạng tổng quát của dãy số
\(u_{n+1}=\dfrac{n\left(u_n+2\right)+n^2+1}{n+1}\)
\(\Rightarrow\left(n+1\right)u_{n+1}=nu_n+n^2+2n+1\)
\(\Rightarrow\left(n+1\right)u_{n+1}-\dfrac{1}{3}\left(n+1\right)^3-\dfrac{1}{2}\left(n+1\right)^2-\dfrac{1}{6}\left(n+1\right)=n.u_n-\dfrac{1}{3}n^3-\dfrac{1}{2}n^2-\dfrac{1}{6}n\)
Đặt \(v_n=u.u_n-\dfrac{1}{3}n^3-\dfrac{1}{2}n^2-\dfrac{1}{6}n\Rightarrow\left\{{}\begin{matrix}v_1=1-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{6}=0\\v_{n+1}=v_n=...=v_1=0\end{matrix}\right.\)
\(\Rightarrow n.u_n-\dfrac{1}{3}n^3-\dfrac{1}{2}n^2-\dfrac{1}{6}n=0\)
\(\Rightarrow u_n=\dfrac{1}{3}n^2+\dfrac{1}{2}n+\dfrac{1}{6}=\dfrac{\left(n+1\right)\left(2n+1\right)}{6}\)
\(\left\{{}\begin{matrix}u_1=u_2=1\\u_n=u_{n-1}+u_{n-2}\end{matrix}\right.\forall n>2,n\in N^{sao}\)
Viết 5 số hạng đầu của dãy số \(u_n\)
\(u_1=1\)
\(u_2=1\)
\(u_3=u_2+u_1=1+1=2\)
\(u_4=u_3+u_2=2+1=3\)
\(u_5=u_4+u_3=3+2=5\)
Bài 1: Cho dãy (Un): \(\left\{{}\begin{matrix}U_1=1\\U_{n+1}=2U_n+3\end{matrix}\right.\)
a) Tìm: U5
b) Tìm số hạng tổng quát của dãy (Un)
Bài 2: Xét tính tăng, giảm
a) \(U_n=\dfrac{\sqrt{n+1}-\sqrt{n}}{n}\)
b) \(\left(U_n\right):\left\{{}\begin{matrix}U_n=3\\U_{n+1}=\sqrt{1+U_n^2}\end{matrix}\right.\)
Bài 3: Tìm a để (Un): \(U_n=\dfrac{an+2}{n+1}\) là dãy tăng
Bài 4: Xét tính bị chặn:
a) \(U_n=\dfrac{n^2+1}{2n^2-3}\)
b) \(U_n=\dfrac{n-1}{\sqrt{n^2+1}}\)
Bài 5: Cho dãy: \(\left\{{}\begin{matrix}U_1=\sqrt{2}\\U_n+1=\sqrt{U_n+2}\end{matrix}\right.\), (Un)
Chứng minh rằng: (U1) tăng, bị chặn trên bởi 2
1:
a: \(u_2=2\cdot1+3=5;u_3=2\cdot5+3=13;u_4=2\cdot13+3=29;\)
\(u_5=2\cdot29+3=61\)
b: \(u_2=u_1+2^2\)
\(u_3=u_2+2^3\)
\(u_4=u_3+2^4\)
\(u_5=u_4+2^5\)
Do đó: \(u_n=u_{n-1}+2^n\)
Cho dãy số (Un): \(\left\{{}\begin{matrix}u_1=1,u_2=2\\u_{n+2}=-\sqrt{2}.u_{n+1}-u_n\end{matrix}\right.\). Hãy xác định số hạng tổng quát của dãy (Un)