\(\left\{{}\begin{matrix}x^2+y^2+x+y=8\\x^2+y^2+xy=7\end{matrix}\right. \)
ghpt
1/Ghpt\(\left\{{}\begin{matrix}x^2+y^2+x^2y^2=1+2xy\\\left(x-y\right)\left(1+xy\right)=1-xy\end{matrix}\right.\)
2/Ghpt\(\left\{{}\begin{matrix}x^2y+y+xy^2+x=18xy\\x^4y^2+y^2+x^2y^4+x^2=208x^2y^2\end{matrix}\right.\)
3/Ghpt\(\left\{{}\begin{matrix}\sqrt{x+3}+\sqrt{y+3}=4\\\dfrac{1}{x}+\dfrac{1}{y}=2\end{matrix}\right.\)
4/ Cho x,y là nghiệm của hệ phương trình
\(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=2m\end{matrix}\right.\)
Tìm min và max của A=xy
5/cho x,y,z thỏa mãn đk
\(\left\{{}\begin{matrix}xy+yz+xz=1\\x^2+y^2+z^2=2\end{matrix}\right.\)
Chứng minh rằng: \(\dfrac{-4}{3}\le x,y,z\le\dfrac{4}{3}\)
6/Ghpt bằng 3 cách\(\left\{{}\begin{matrix}x+y+z=1\\\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)
7/Ghpt\(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)
8/Ghpt\(\left\{{}\begin{matrix}x^2-3y=-2\\y^2-3x=-2\end{matrix}\right.\)
9/Ghpt bằng 2 cách\(\left\{{}\begin{matrix}x+\sqrt{y+3}=3\\y+\sqrt{x+3}=3\end{matrix}\right.\)
10/Ghpt\(\left\{{}\begin{matrix}x+\dfrac{2}{y}=\dfrac{3}{x}\\y+\dfrac{2}{x}=\dfrac{3}{y}\end{matrix}\right.\)
11/Ghpt\(\left\{{}\begin{matrix}\sqrt[3]{3x+5}=y+1\\\sqrt[3]{3y+5}=x+1\end{matrix}\right.\)
12/Ghpt\(\left\{{}\begin{matrix}3x^2y-y^2-2=0\\3y^2x-x^2-2=0\end{matrix}\right.\)
13/Giải các phương trình sau bằng cách đứa về hệ pt đối xứng loại II:
a)\(\left(x^2-3\right)^2-x-3=0\)
b)\(x^2-2=\sqrt{x+2}\)
14/Ghpt:\(\left\{{}\begin{matrix}x^2+y^2+xy=3\\x^2-y^2+xy=1\end{matrix}\right.\)
Ghpt:
\(\left\{{}\begin{matrix}y\left(x+y\right)^2+y-2=2x^2\\x^2+y^2+xy+1=2y\end{matrix}\right.\)
Ghpt
\(\left\{{}\begin{matrix}y\left(x+y\right)^2+y-2=2x^2\\x^2+y^2+xy+1=2y\end{matrix}\right.\)
GHPT: \(\left\{{}\begin{matrix}x^2+1+y^2+xy=4y\\x+y-2=\dfrac{y}{x^2+1}\end{matrix}\right.\)
- Với \(y=0\) không phải nghiệm
- Với \(y\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2+1}{y}+x+y=4\\x+y-2=\dfrac{y}{x^2+1}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x^2+1}{y}+2=4-\dfrac{y}{x^2+1}\)
Đặt \(\dfrac{x^2+1}{y}=t\Rightarrow t=2-\dfrac{1}{t}\Leftrightarrow t^2-2t+1=0\)
\(\Rightarrow t=1\Rightarrow\dfrac{x^2+1}{y}=1\Rightarrow\dfrac{y}{x^2+1}=1\)
Thế xuống pt dưới: \(x+y-2=1\Rightarrow x=3-y\)
Thế vào pt trên: \(\left(3-y\right)^2+1+y^2+y\left(3-y\right)=4y\)
\(\Leftrightarrow...\)
GHPT \(\left\{{}\begin{matrix}xy^2+2y^2-2=x^2+3x\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
Mk hướng dẫn bạn cách làm thôi nha (Tại nó dài lắm!)
\(\left\{{}\begin{matrix}xy^2+2y^2-2=x^2+3x\\x+y=3\sqrt{y-1}\end{matrix}\right.\) (y \(\ge\) 1)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y^2\left(x+2\right)-\left(x+1\right)\left(x+2\right)=0\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x+2\right)\left(y^2-x-1\right)=0\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x+2=0\\y^2-x-1=0\end{matrix}\right.\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-2\\x=y^2-1\end{matrix}\right.\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
Xét các TH1: \(\left\{{}\begin{matrix}x=-2\\-2+y=3\sqrt{y-1}\end{matrix}\right.\)
Giải hpt tìm được: \(\left[{}\begin{matrix}y=\dfrac{13+\sqrt{117}}{2}\left(TM\right)\\y=\dfrac{13-\sqrt{117}}{2}\left(KTM\right)\end{matrix}\right.\)
\(\Rightarrow\) y = \(\dfrac{13+\sqrt{117}}{2}\)
Vậy ...
TH2: \(\left\{{}\begin{matrix}x=y^2-1\\y^2-1+y=3\sqrt{y-1}\end{matrix}\right.\)
Chứng minh được pt thứ hai vô nghiệm
Vậy ...
Chúc bn học tốt!
GHPT: \(\left\{{}\begin{matrix}\left(x+y\right)^2=2xy\left(xy+1\right)\\\left(x+y\right)\left(1+xy\right)=2\left(x^2+y^2\right)\end{matrix}\right.\)
Lời giải:
Ký hiệu 2PT trong hệ là PT$(1)$ và $(2)$:
HPT \(\Leftrightarrow \left\{\begin{matrix} x^2+y^2=2(xy)^2\\ (x+y)(1+xy)=2(x^2+y^2)\end{matrix}\right.\Rightarrow 4(xy)^2=(x+y)(1+xy)\)
\(\Rightarrow 16(xy)^4=(x+y)^2(1+xy)^2\)
Nếu $xy+1=0\Rightarrow xy=-1$
$4x^2y^2=(x+y)(xy+1)=0\Rightarrow xy=0$ ( mâu thuẫn với $xy=-1$)
Do đó $xy+1\neq 0$
$(1)\Leftrightarrow (x+y)^2(xy+1)^2=2xy(xy+1)^3$
$\Leftrightarrow 16x^4y^4=2xy(xy+1)^3$
$\Leftrightarrow 2xy[(2xy)^3-(xy+1)^3]=0$
Nếu $xy=0$ thì từ $(1)\Rightarrow x+y=0$
$\Rightarrow x=y=0$. Thử lại thấy thỏa mãn.
Nếu $(2xy)^3-(xy+1)^3=0$
$\Rightarrow 2xy=xy+1\Rightarrow xy=1$
Thay vào PT $(1)\Rightarrow (x+y)^2=2xy.2=4xy$
$\Leftrightarrow (x-y)^2=0\Rightarrow x=y$
$\Rightarrow x=y=1$
Vậy HPT có nghiệm $(x,y)=(0,0); (1,1)$
Ghpt \(\left\{{}\begin{matrix}x^2+2y=xy+4\\x^2-x-3-x\sqrt{6-x}=\left(y-3\right)\sqrt{y-3}\end{matrix}\right.\)
\(ĐK:x\le6;y\ge3\\ \left\{{}\begin{matrix}x^2+2y=xy+4\left(1\right)\\x^2-x-3-x\sqrt{6-x}=\left(y-3\right)\sqrt{y-3}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2-4+2y-xy=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)-y\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-y+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=y-2\end{matrix}\right.\)
Từ đó thế vào PT(2)
Với \(x=y-2\Leftrightarrow x+2=y\)
\(\left(2\right)\Leftrightarrow x^2-x+3-x\sqrt{6-x}=\left(x-1\right)\sqrt{x-1}\left(1\le x\le6\right)\\ \Leftrightarrow2x^2-2x+6-2x\sqrt{6-x}=2\left(x-1\right)\sqrt{x-1}\\ \Leftrightarrow\left(x-\sqrt{6-x}\right)^2+x\left(x-1\right)=2\left(x-1\right)\sqrt{x-1}\\ \Leftrightarrow\left(x-\sqrt{6-x}\right)^2+\left(x-1\right)\left(x-2\sqrt{x-1}\right)=0\\ \Leftrightarrow\left(\dfrac{x^2-6+x}{x+\sqrt{6-x}}\right)^2+\dfrac{\left(x-1\right)\left(x^2-4x+4\right)}{x^2+2\sqrt{x-1}}=0\\ \Leftrightarrow\left[\dfrac{\left(x-2\right)\left(x+3\right)}{x+\sqrt{6-x}}\right]^2+\dfrac{\left(x-1\right)\left(x-2\right)^2}{x^2+2\sqrt{x-1}}=0\\ \Leftrightarrow\left(x-2\right)^2\left[\left(\dfrac{x+3}{x+\sqrt{6-x}}\right)^2+\dfrac{x-1}{x^2+2\sqrt{x-1}}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\left(\dfrac{x+3}{x+\sqrt{6-x}}\right)^2+\dfrac{x-1}{x^2+2\sqrt{x-1}}=0\left(1\right)\end{matrix}\right.\)
Dễ thấy \(\left(1\right)>0\) với \(x\ge1\)
Do đó \(x=2\Leftrightarrow y=4\)
Vậy HPT có nghiệm \(\left(x;y\right)=\left(2;4\right)\)
Ghpt:
a) \(\left\{{}\begin{matrix}x^2+2y^2=2x-2xy+1\\3x^2+2xy-y^2=2x-y+5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}4xy+4x^2+4y^2+\dfrac{3}{\left(x+y\right)^2}=7\\2x+\dfrac{1}{x+y}=3\end{matrix}\right.\)
ghpt \(\left\{{}\begin{matrix}x^8y^8+y^4=2x\\2x+2=2x\left(1+y\right)\sqrt{xy}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^8y^8+y^4=2x\left(☺\right)\\2x+2=2x\left(1+y\right)\sqrt{xy}\left(☻\right)\end{matrix}\right.\)
\(pt\left(☻\right)\Leftrightarrow x+1=x\left(1+y\right)\sqrt{xy}\)
Ta dễ dàng suy ra \(x;y>0\)
Chia 2 vế của \(pt\left(☻\right)\) cho \(x\sqrt{x}\) ta có:
\(pt\left(☻\right)\Leftrightarrow\left(\sqrt{xy}-1\right)\left(xy+\sqrt{xy}+x+1\right)=0\)
Từ \(x;y>0\Rightarrow xy>0\Rightarrow xy+\sqrt{xy}+x+1>0\) (loại)
Suy ra \(\sqrt{xy}-1=0\Rightarrow\sqrt{xy}=1\Rightarrow x=\dfrac{1}{y}\)
\(\Rightarrow\left(☺\right)\Leftrightarrow\left(y-1\right)\left(y^4+y^3+y^2+y+2\right)=0\)
Do \(y>0\)\(\Rightarrow y^4+y^3+y^2+y+2>0\) (loại)
\(\Rightarrow y-1=0\Rightarrow y=1\Rightarrow x=y=1\)
Vậy hpt có 1 cặp nghiệm duy nhất \((x;y)=(1;1)\)
xí bài này nhé, 15 phút sau quay lại làm