Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hào 7A4
Xem chi tiết
Shinichi Kudo
16 tháng 6 2023 lúc 20:51

loading...  

Shinichi Kudo
16 tháng 6 2023 lúc 21:06

loading...  

(:!Tổng Phước Yaru!:)
Xem chi tiết
(:!Tổng Phước Yaru!:)
25 tháng 2 2022 lúc 16:41

=(

(:!Tổng Phước Yaru!:)
Xem chi tiết
Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2021 lúc 22:06

- Với \(y=0\) không phải nghiệm

- Với \(y\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2+1}{y}+x+y=4\\x+y-2=\dfrac{y}{x^2+1}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x^2+1}{y}+2=4-\dfrac{y}{x^2+1}\)

Đặt \(\dfrac{x^2+1}{y}=t\Rightarrow t=2-\dfrac{1}{t}\Leftrightarrow t^2-2t+1=0\)

\(\Rightarrow t=1\Rightarrow\dfrac{x^2+1}{y}=1\Rightarrow\dfrac{y}{x^2+1}=1\)

Thế xuống pt dưới: \(x+y-2=1\Rightarrow x=3-y\)

Thế vào pt trên: \(\left(3-y\right)^2+1+y^2+y\left(3-y\right)=4y\)

\(\Leftrightarrow...\)

Nguyễn Trọng Chiến
Xem chi tiết
Trương Huy Hoàng
31 tháng 1 2021 lúc 15:03

Mk hướng dẫn bạn cách làm thôi nha (Tại nó dài lắm!)

\(\left\{{}\begin{matrix}xy^2+2y^2-2=x^2+3x\\x+y=3\sqrt{y-1}\end{matrix}\right.\) (y \(\ge\) 1)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y^2\left(x+2\right)-\left(x+1\right)\left(x+2\right)=0\\x+y=3\sqrt{y-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x+2\right)\left(y^2-x-1\right)=0\\x+y=3\sqrt{y-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x+2=0\\y^2-x-1=0\end{matrix}\right.\\x+y=3\sqrt{y-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-2\\x=y^2-1\end{matrix}\right.\\x+y=3\sqrt{y-1}\end{matrix}\right.\)

Xét các TH1: \(\left\{{}\begin{matrix}x=-2\\-2+y=3\sqrt{y-1}\end{matrix}\right.\)

Giải hpt tìm được: \(\left[{}\begin{matrix}y=\dfrac{13+\sqrt{117}}{2}\left(TM\right)\\y=\dfrac{13-\sqrt{117}}{2}\left(KTM\right)\end{matrix}\right.\)

\(\Rightarrow\) y = \(\dfrac{13+\sqrt{117}}{2}\)

Vậy ...

TH2: \(\left\{{}\begin{matrix}x=y^2-1\\y^2-1+y=3\sqrt{y-1}\end{matrix}\right.\) 

Chứng minh được pt thứ hai vô nghiệm

Vậy ...

Chúc bn học tốt!

Curry
Xem chi tiết
Akai Haruma
30 tháng 5 2020 lúc 10:36

Lời giải:

Ký hiệu 2PT trong hệ là PT$(1)$ và $(2)$:

HPT \(\Leftrightarrow \left\{\begin{matrix} x^2+y^2=2(xy)^2\\ (x+y)(1+xy)=2(x^2+y^2)\end{matrix}\right.\Rightarrow 4(xy)^2=(x+y)(1+xy)\)

\(\Rightarrow 16(xy)^4=(x+y)^2(1+xy)^2\)

Nếu $xy+1=0\Rightarrow xy=-1$

$4x^2y^2=(x+y)(xy+1)=0\Rightarrow xy=0$ ( mâu thuẫn với $xy=-1$)

Do đó $xy+1\neq 0$

$(1)\Leftrightarrow (x+y)^2(xy+1)^2=2xy(xy+1)^3$

$\Leftrightarrow 16x^4y^4=2xy(xy+1)^3$

$\Leftrightarrow 2xy[(2xy)^3-(xy+1)^3]=0$
Nếu $xy=0$ thì từ $(1)\Rightarrow x+y=0$

$\Rightarrow x=y=0$. Thử lại thấy thỏa mãn.

Nếu $(2xy)^3-(xy+1)^3=0$

$\Rightarrow 2xy=xy+1\Rightarrow xy=1$

Thay vào PT $(1)\Rightarrow (x+y)^2=2xy.2=4xy$

$\Leftrightarrow (x-y)^2=0\Rightarrow x=y$

$\Rightarrow x=y=1$

Vậy HPT có nghiệm $(x,y)=(0,0); (1,1)$

ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 10 2021 lúc 15:22

\(ĐK:x\le6;y\ge3\\ \left\{{}\begin{matrix}x^2+2y=xy+4\left(1\right)\\x^2-x-3-x\sqrt{6-x}=\left(y-3\right)\sqrt{y-3}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2-4+2y-xy=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)-y\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-y+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=y-2\end{matrix}\right.\)

Từ đó thế vào PT(2)

Nguyễn Hoàng Minh
25 tháng 10 2021 lúc 16:07

Với \(x=y-2\Leftrightarrow x+2=y\)

\(\left(2\right)\Leftrightarrow x^2-x+3-x\sqrt{6-x}=\left(x-1\right)\sqrt{x-1}\left(1\le x\le6\right)\\ \Leftrightarrow2x^2-2x+6-2x\sqrt{6-x}=2\left(x-1\right)\sqrt{x-1}\\ \Leftrightarrow\left(x-\sqrt{6-x}\right)^2+x\left(x-1\right)=2\left(x-1\right)\sqrt{x-1}\\ \Leftrightarrow\left(x-\sqrt{6-x}\right)^2+\left(x-1\right)\left(x-2\sqrt{x-1}\right)=0\\ \Leftrightarrow\left(\dfrac{x^2-6+x}{x+\sqrt{6-x}}\right)^2+\dfrac{\left(x-1\right)\left(x^2-4x+4\right)}{x^2+2\sqrt{x-1}}=0\\ \Leftrightarrow\left[\dfrac{\left(x-2\right)\left(x+3\right)}{x+\sqrt{6-x}}\right]^2+\dfrac{\left(x-1\right)\left(x-2\right)^2}{x^2+2\sqrt{x-1}}=0\\ \Leftrightarrow\left(x-2\right)^2\left[\left(\dfrac{x+3}{x+\sqrt{6-x}}\right)^2+\dfrac{x-1}{x^2+2\sqrt{x-1}}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\left(\dfrac{x+3}{x+\sqrt{6-x}}\right)^2+\dfrac{x-1}{x^2+2\sqrt{x-1}}=0\left(1\right)\end{matrix}\right.\)

Dễ thấy \(\left(1\right)>0\) với \(x\ge1\)

Do đó \(x=2\Leftrightarrow y=4\)

Vậy HPT có nghiệm \(\left(x;y\right)=\left(2;4\right)\)

ILoveMath
Xem chi tiết
michelle holder
Xem chi tiết
Lightning Farron
3 tháng 4 2017 lúc 21:38

\(\left\{{}\begin{matrix}x^8y^8+y^4=2x\left(☺\right)\\2x+2=2x\left(1+y\right)\sqrt{xy}\left(☻\right)\end{matrix}\right.\)

\(pt\left(☻\right)\Leftrightarrow x+1=x\left(1+y\right)\sqrt{xy}\)

Ta dễ dàng suy ra \(x;y>0\)

Chia 2 vế của \(pt\left(☻\right)\) cho \(x\sqrt{x}\) ta có:

\(pt\left(☻\right)\Leftrightarrow\left(\sqrt{xy}-1\right)\left(xy+\sqrt{xy}+x+1\right)=0\)

Từ \(x;y>0\Rightarrow xy>0\Rightarrow xy+\sqrt{xy}+x+1>0\) (loại)

Suy ra \(\sqrt{xy}-1=0\Rightarrow\sqrt{xy}=1\Rightarrow x=\dfrac{1}{y}\)

\(\Rightarrow\left(☺\right)\Leftrightarrow\left(y-1\right)\left(y^4+y^3+y^2+y+2\right)=0\)

Do \(y>0\)\(\Rightarrow y^4+y^3+y^2+y+2>0\) (loại)

\(\Rightarrow y-1=0\Rightarrow y=1\Rightarrow x=y=1\)

Vậy hpt có 1 cặp nghiệm duy nhất \((x;y)=(1;1)\)

Nguyễn Huy Thắng
3 tháng 4 2017 lúc 21:14

xí bài này nhé, 15 phút sau quay lại làm