Tìm a và b, biết:
1/a trừ 1/b = 2/195
Giải chi tiết được không ? Mình cảm ơn nhiều !
Tìm a và b biết:
1/a - 1/b. = 2/195
Giải chi tiết nhé ! Mình cảm ơn nhiều.
Tìm cặp số tự nhiên a và b, biết: (2a + 1) (b - 2) = 12
CÁC BẠN GIẢI CHI TIẾT BÀI NÀY GIÚP MÌNH NHÉ! CẢM ƠN CÁC BẠN RẤT NHIỀU! 🤧🙏💖
Lời giải:
Vì $a,b$ là số tự nhiên nên $2a+1,b-2$ là số nguyên
$(2a+1)(b-2)=12$ nên $2a+1$ là ước của $12$
Mà $2a+1$ là số tự nhiên lẻ nên $2a+1\in\left\{1;3\right\}$
Nếu $2a+1=1$ thì $b-2=12:1=12$
$\Rightarrow a=0; b=14$ (thỏa mãn)
Nếu $2a+1=3$ thì $b-2=12:3=4$
$\Rightarrow a=1; b=6$ (thỏa mãn)
(a+b)(a^2+b^2)(a^3+b^3)≤4(a^6+b^6) nếu biết a+b≥0
bạn nào giải được nếu có thể thì ghi chi tiết giúp mình được không ạ! Mình load chậm toán lắm,huhu! cảm ơn rất rất nhiều ạ<3
Tìm cặp số tự nhiên a và b, biết: 2ab - 3a + b = 9
CÁC BẠN GIẢI CHI TIẾT BÀI NÀY GIÚP MÌNH NHÉ! CẢM ƠN CÁC BẠN RẤT NHIỀU! 🤧🙏💖
=>2ab-3a+b-9=0
=>b(2a+1)-3a-4,5-*4,5=0
=>b(2a+1)-1,5(2a+1)=4,5
=>(2a+1)(b-1,5)=4,5
=>(2a+1)(2b-3)=9
=>\(\left(2a+1;2b-3\right)\in\left\{\left(1;9\right);\left(3;3\right);\left(9;1\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(0;6\right);\left(1;3\right);\left(4;2\right)\right\}\)
Tìm cặp số tự nhiên a và b, biết: 8a2 + 31b2 = 2468
CÁC BẠN GIẢI CHI TIẾT BÀI NÀY GIÚP MÌNH NHÉ! CẢM ƠN CÁC BẠN RẤT NHIỀU! 🤧🙏💖
Bạn dùng phương pháp chặn `b` rồi tìm `a` nhé.
`8a^2 + 31b^2 = 2468 <=> 31b^2 <= 2468 <=> b^2 < 81 -> b = 1 -> 8.`
Từ đây tìm `a` theo `b` và nhớ thử lại nhé.
Tìm cặp số tự nhiên a và b, biết: 12ab - 9b + 20a = 2835
CÁC BẠN GIẢI CHI TIẾT BÀI NÀY GIÚP MÌNH NHÉ! CẢM ƠN CÁC BẠN RẤT NHIỀU! 🤧🙏💖
=>3b(4a-3)+20a-15=2820
=>(4a-3)(3b+5)=2820
=>a chia 4 dư 1, b chia 3 dư 2
Do đó: \(\left(a,b\right)\in\varnothing\)
Tìm a, b, c:
aab × b = cb5b
Giải chi tiết nhé, mình cảm ơn mọi người nhiều !
thay dấu ngoặc nhọn bằng dấu nhân
\(\frac{\hept{\begin{cases}aab\\b\end{cases}}}{cb5b}\)
* b x b = _b => b là 1,5,6
\(\frac{\hept{\begin{cases}aa1\\1\end{cases}}}{0151}\) vì kq có 1 khác 5 , trong khi cái trên a=a nên cái này vô lý.
\(\frac{\hept{\begin{cases}aa5\\5\end{cases}}}{c555}\) thấy 5x5 =25 => nhớ 2 ; => cái số thứ 2 từ dưới lên trên là 5a =_3 (vì nhớ thêm 2 nữa là đc 5)
nhưng 5a = _3 vô lý nên loại
=> b chỉ có thể là 6
\(\frac{\hept{\begin{cases}aa6\\6\end{cases}}}{c656}\) 6x6=36 => nhớ 3 ; số thứ 2 từ dưới lên trên là 6a = _2 (vì nhớ 3 : cộng thêm 3 nữa là đc 5) => a là 2 hoặc 7
thế vào thấy a=7 đúng và c=4
kl: a=7, b=6, c=4
Cho a,b,c thỏa mãn a+b+c=6, \(0\le a,b,c\le4\)Tìm max của P= a2+b2+c2+ab+bc+ca
Các bạn giúp mình với, mình cần gấp lắm mà giải hoài không ra, chỉ biết đáp số là 28 thôi. Các bạn làm ơn giải chi tiết giúp mình nhé, cảm ơn các bạn nhiều!
Cho \(a^2+b^2+c^2=a^3+b^3+c^3=1\)
Tính giá trị biểu thức: \(C=a^2+b^9+c^{1945}\)
Mình đang cần lời giải (chi tiết) và đang gấp. Xin giúp mình. Cảm ơn nhiều
Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)
Vì \(a^2+b^2+c^2=1\Rightarrow lal,lbl,lcl\le1\)
\(\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}}\Rightarrow a^2+b^2+c^2\ge a^3+b^3+c^3=1\)
Dấu = xảy ra khi \(\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}}\)
Mà theo giả thuyết thì \(\hept{\begin{cases}a\ge b\ge c\\a^2+b^2+c^2=1\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=c=0\end{cases}}}\)
Vậy C = 1
Tương tự với các trường hợp giả sử về a,b,c khác ta luôn có giá trị C = 1
Giả sử\(a\ge b\ge c\)(ko mất tính tổng quát) .Ta có :\(\hept{\begin{cases}a^2+b^2+c^2=1\\a^2;b^2;c^2\ge0\end{cases}\Rightarrow a^2;b^2;c^2\le1\Rightarrow|a|;|b|;|c|\le1\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}\Rightarrow}a^2+b^2+c^2\ge a^3+b^3+c^3=1}\)
\(\Rightarrow\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}\Rightarrow\hept{\begin{cases}a,b,c\in\left\{0;1\right\}\\a^2+b^2+c^2=1\\a\ge b\ge c\end{cases}}\Rightarrow a=1;b=c=0\Rightarrow a^2+b^9+c^{1945}=1}\)
Ta có:
\(a^2+b^2+c^2=1\Rightarrow a^2,b^2,c^2\le1\)
\(\Rightarrow a,b,c\le1\)
Ta lại có: \(a^2+b^2+c^2=a^3+b^3+c^3\)
\(\Leftrightarrow a^3-a^2+b^3-b^2+c^3-c^2=0\)
\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)
Mà \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)\le0\)với mọi a,b,c (vì \(a^2,b^2,c^2\le0\)và\(a,b,c\le1\))
Suy ra ta phải có: \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)
Kết hợp gt suy ra 3 số a,b,c phải là một số bằng 1 và 2 số còn lại bằng 0.
Vì a,b,c vai trò như nhau nên giả sử \(a=1\Rightarrow b=c=0\)
Khi đó \(C=a^2+b^9+c^{1945}=1+0+0=1\)