Cho x,y,z thuộc N* và A=x/x+y + y/y+z + z/z+x
cho x,y,z thuộc Z; A= x/x+y+z + y/x+y+z + z/y+z+t + t/x+y+t
chứng minh A không thuộc N
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
cho 3 số x, y, z khác 0 và x+y+z khác 0 thỏa mãn: (y+z-2x)/x=(z+x-2y)/y=(x+y-2z)/z
Hãy cm: A=[1+x/y]×[1+y/z]×[1+z/x] thuộc N
Cho x, y, z thuộc số dương và :
A=(x^2 /x+y)+(y^2/y+z)+(z^2/z+x)
B=(y^2/x+y)+(z^2/y+z)+(x^2/z+x)
Chứng minh A=B
cho x,y,z thuộc N* và
A=x/x+y+y/y+z+z/z+x. chứng minh rằng giá trị của A không là số nguyên
Lời giải:
Do $x,y,z>0$ nên:
$A> \frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}=\frac{x+y+z}{x+y+z}=1(*)$
Mặt khác:
$\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z>0$
$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}(1)$
Hoàn toàn tương tự ta có:
$\frac{y}{y+z}< \frac{y+x}{y+z+x}(2)$
$\frac{z}{z+x}< \frac{z+y}{z+x+y}(3)$
Lấy $(1)+(2)+(3)$ ta thu được: $A< \frac{2(x+y+z)}{x+y+z}=2(**)$
Từ $(*); (**)\Rightarrow 1< A< 2$ nên $A$ không là số nguyên.
Cho các số x, y, z,t thỏa mãn:
y+z+t-n^x/x=z+t+x-n^y/y=t+x+z-n^z/z=x+y+z-n^t/t ( n thuộc N, x+y+z+t=2018). Tinh B=x+2y+3z+t
cho x, y, z thuộc n
cmr x/x+y + y/y+z + z/z+x >= 1
cho x, y, z thuộc n
cmr x/x+y + y/y+z + z/z+x >= 1
cho x, y, z thuộc n
cmr x/x+y + y/y+z + z/z+x >= 1
1/Tìm số tự nhiên M nhỏ nhất có 4 chữ số thoả
M= a+ b= c+d = e+f
Biết a,b,c,d,e,f thuộc N* và a/b= 14/22; c/d = 11/13; e/f = 13/17
2/Cho x,y,z,t khác 0 thoả
y+z+t-nx/x = z+t+x-ny/y= t+x+y-nz/z = x+y+z-nt/t ( n thuộc N)
và x+y+z+t = 2012. Tính P = x+ 2y -3z +t