tìm gtnn của biểu thức a=(x1+1)2+2(mx2+1)
gọi x1, x1 là nghiệm của pt x^2+2(m+1) x+m^2+4m+3. tìm GTNN biểu thức A|x1x2-2x1-2x2|
bài này có GTLN thôi bạn
\(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)
Để pt luôn có 2 nghiệm
\(-2m-2\ge0\Leftrightarrow m+1\le0\Leftrightarrow m\le-1\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=m^2+4m+3\end{matrix}\right.\)
\(A=\left|x_1x_2-2\left(x_1+x_2\right)\right|\)
\(=\left|m^2+4m+3+4\left(m+1\right)\right|=\left|m^2+8m+7\right|\)
\(=\left|m^2+8m+16-9\right|=\left|\left(m+4\right)^2-9\right|\)
Ta có : \(m\le-1\Rightarrow m+4\le3\Leftrightarrow\left(m+4\right)^2\le9\Leftrightarrow\left(m+4\right)^2-9\le0\Rightarrow\left|\left(m+4\right)^2-9\right|\le\left|0\right|=0\)
Vậy với m = -1 thì A đạt GTNN là 0
Lời giải:
$x^2+2(m+1)x+m^2+4m+3=0$
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m+1)^2-(m^2+4m+3)\geq 0$
$\Leftrightarrow -2m-2\geq 0\Leftrightarrow m\leq -1$
Áp dụng định lý Viet:
$x_1+x_2=-2(m+1)$
$x_1x_2=m^2+4m+3$
Khi đó:
$A=|x_1x_2-2x_1-2x_2|$
$=|x_1x_2-2(x_1+x_2)|=|m^2+4m+3+4(m+1)|=|m^2+8m+7|$
$=|(m+1)(m+7)|\geq 0$ với mọi $m\leq -1$
Vậy GTNN của $A$ là $0$ khi $m=-1$
Cho phương trình ẩn x : x^2 - 2( m - 1 )x - 3 - m = 0. Tìm m để : a, biểu thức A = x1^2 + x2^2 đạt GTNN b, x1^2 + x2^2 = 8m^3 - 8m^2
\(\Delta'=\left(m-1\right)^2+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{2}>0;\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)
a.
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4\left(m-1\right)^2+2\left(m+3\right)=4m^2-6m+10\)
\(=4\left(m-\dfrac{3}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{3}{4}\)
Dấu = xảy ra khi \(m=\dfrac{3}{4}\)
b.
\(x_1^2+x_2^2=8m^3-8m^2\)
\(\Leftrightarrow4m^2-6m+10=8m^3-8m^2\)
\(\Leftrightarrow8m^3-12m^2+6m-1=9\)
\(\Leftrightarrow\left(2m-1\right)^3=9\)
\(\Leftrightarrow2m-1=\sqrt[3]{9}\)
\(\Rightarrow m=\dfrac{1+\sqrt[3]{9}}{2}\)
a: Δ=(2m-2)^2-4(-m-3)
=4m^2-8m+4+4m+12
=4m^2-4m+16
=4m^2-4m+1+15=(2m-1)^2+15>0
=>Phương trình luôn có 2 nghiệm pb
A=x1^2+x2^2
=(x1+x2)^2-2x1x2
=(2m-2)^2-2(-m-3)
=4m^2-8m+4+2m+6
=4m^2-6m+10
=4(m^2-3/2m+5/2)
=4(m^2-2*m*3/4+9/16+31/16)
=4(m-3/4)^2+31/4>=31/4
Dấu = xảy ra khi m=3/4
b: x1^2+x2^=8m^3-8m^2
=>4m^2-6m+10=8m^3-8m^2
=>8m^3-8m^2-4m^2+6m-10=0
=>8m^3-12m^2+6m-10=0
=>\(m\simeq1,54\)
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
1. Cho \(x,y,z>0\) và \(x^3+y^2+z=2\sqrt{3}+1\). Tìm GTNN của biểu thức \(P=\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\)
2. Cho \(a,b>0\). Tìm GTNN của biểu thức \(P=\dfrac{8}{7a+4b+4\sqrt{ab}}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
B1:Tìm m để pt x^2 +(4m+1)x+m-4=0 có 2 nghiệm x1,x2 thoả mãn |x1-x2|=17 B2: cho pt x^2-2(m+1)x+m-4=0.Tìm gtnn của biểu thức M=|x1-x2|
B3: x^2-mx+m-1=0.Đặt A=x1^2+x2^2-6x1.x2 tìm m để A=8. Tìm gtnn của A
Cho pt: x^2 -(m-1)x -3 =0 (1)
A. Giải pt khi m=3
B. Tìm m để pt có 2 nghiệm x1,x2 thoã mãn hệ thức x1^2 +x2^2 = 15
C. Tìm GTNN của bt: -6/ x1^2 + x2^2 + x1xx2, biết x1,x2 là 2 nghiệm của pt (1)
Tìm GTNN của biểu thức sau:
1)A=\(\dfrac{b^2}{b-1}\), b>1
Tìm GTLN của biểu thức sau:
1)B=\(\dfrac{\sqrt{b-2}}{b},b>2\)
\(A=\dfrac{b^2}{b-1}=\dfrac{b^2-1+1}{b-1}=b+1+\dfrac{1}{b-1}=b-1+\dfrac{1}{b-1}+2\)
Áp dụng BĐT cosi cho \(b>0\left(b>1\right)\)
\(A=b-1+\dfrac{1}{b-1}+2\ge2\sqrt{\left(b-1\right)\cdot\dfrac{1}{b-1}}+2=2+2=4\)
Dấu \("="\Leftrightarrow\left(b-1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}b-1=1\\b-1=-1\left(ktm\right)\end{matrix}\right.\Leftrightarrow b=2\left(tm\right)\)
tìm GTLN hoặc GTNN của biểu thức: A = (x+1)^2 + 9/(x+1)^2 + 2
\(A=\dfrac{\left(x+1\right)^2+2+7}{\left(x+1\right)^2+2}=1+\dfrac{7}{\left(x+1\right)^2+2}< =1+\dfrac{7}{2}=\dfrac{9}{2}\)
Dấu = xảy ra khi x=-1
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự