Tìm các số nguyên x, y thỏa mãn \(2xy+4x+2y+1>5x^2+2y^2\)
1/tìm các cặp số nguyên (x;y) thỏa mãn:\(5x^2+2xy+y^2-4x-40=0\)0
2/tìm các số nguyên x;y thỏa mãn:\(3xy+x+15y-44=0\)
3/gtp nghiệm nguyên :\(2x^2+3xy-2y^2=7\)
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
Ttìm cặp số x, y nguyên thỏa mãn 5x^2 +y^2 -2xy+2x-6y+1<0
Tìm cặp số x,y thỏa 5x^2 +2y+y^2 -4x-40=0
Giải hệ phương trình sau:
xy(x-y)=2
9xy(3x-y)+6=26x^3 -2y^3
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
Tìm các số nguyên X và y thỏa mãn:
a) (x-2)(2y-1)=6
b) 2xy+x=5y
c) 2xy+5x+3y=1
a) (x-2)(2y-1)=6
=>x-2 và 2y-1 thuộc Ư(6)
lập bảng làm típ
b,c phân tích ra thành nt cũng tt a lập bảng
a) (x-2)(2y-1)=6
=>x-2 và 2y-1 thuộc Ư(6)
lập bảng làm típ
b,c phân tích ra thành nt cũng tt a lập bảng
phần gợi ý cũng chép lun hả mày đúng là người vô liên xỉ đó VRCT_I Love Class 6A
Tìm tất cả các cặp số x;y thỏa mãn :x2+2y2+2xy -5x-5y=-6 để x+y là số nguyên
Tìm các cặp số nguyên x,y thỏa mãn pt sau
\(x^2-2xy+2y^2-4x+8\le0\)
Biến đổi bất phương trình thành: \(\left(x^2-2xy+y^2\right)+\left(y^2-4x+4\right)+4\le0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-2\right)^2+4\le0\) (1)
Ta có: \(\left(x-y\right)^2\ge0;\left(y-2\right)^2\ge0\)
Suy ra \(\Leftrightarrow\left(x-y\right)^2+\left(y-2\right)^2+4\ge4\) trái với (1)
Vậy không tồn x, y thỏa mãn bất pt trên.
tìm các số nguyên x y thỏa mãn 2xy^2+x+y+1=x^2+2y^2+xy
tìm các số nguyên dương x,y thỏa mãn 3x^2+y^2+4xy=5x+2y+1
\(3x^2+y^2+4xy=5x+2y+1\)
\(\Leftrightarrow3x^2+x\left(4y-5\right)+\left(y^2-2y-1\right)=0\left(1\right)\)
Coi phương trình (1) là phương trình ẩn x tham số y, ta có:
\(\Delta=\left(4y-5\right)^2-3.4.\left(y^2-2y-1\right)\)
\(=16y^2-40y+25-12y^2+24y+12\)
\(=4y^2-16y+37\)
Để phương trình (1) có nghiệm nguyên thì \(\Delta\) phải là số chính phương hay \(\Delta=4y^2-16y+37=a^2\) (a là số tự nhiên).
\(\Rightarrow4y^2-16y+16+21=a^2\)
\(\Rightarrow a^2-\left(2y-4\right)^2=21\)
\(\Rightarrow\left(a-2y+4\right)\left(a+2y-4\right)=21\)
\(\Rightarrow a-2y+4;a+2y-4\) là các ước số của 21.
Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:
a-2y+4 | 1 | 3 |
a+2y-4 | 21 | 7 |
a | 11 | 5 |
y | 7 | 3 |
Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:
a-2y+4 | 21 | 7 |
a+2y-4 | 1 | 3 |
a | 11 | 5 |
y | -3(loại vì y>0) | 1 |
Với a=11, y=7. Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.7-5\right)+\sqrt{11^2}}{6}=-2\) (loại vì x>0)
\(x_2=\dfrac{-\left(4.7-5\right)-\sqrt{11^2}}{6}=-\dfrac{17}{3}\left(loại\right)\)
Với \(a=5;y=3\). Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.3-5\right)+\sqrt{5^2}}{6}=-\dfrac{1}{3}\left(loại\right)\)
\(x_2=\dfrac{-\left(4.3-5\right)-\sqrt{5^2}}{6}=-2\) (loại vì x>0)
Với \(a=5;y=1\). Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.1-5\right)+\sqrt{5^2}}{6}=1\)
\(x_2=\dfrac{-\left(4.1-5\right)-\sqrt{5^2}}{6}=-\dfrac{2}{3}\left(loại\right)\)
Vậy x,y nguyên dương thỏa mãn phương trình trên là \(x=y=1\)
Dòng 15 từ dưới đếm lên, sửa:
Với \(y< 2\Rightarrow a-2y+4>a+2y-4\) và \(a-2y+4>0\). Lập bảng:
Cần gấp, cần gấp
Tìm tất cả cặp số x,y thỏa mãn: x^2 + 2y^2 +2xy - 5x-5y= -6, để x+y là số nguyên
x² + 2xy + 2y² - 5x - 5y = -6
<=> x² + 2xy + y² - 5(x + y) + y² = -6
<=> (x + y)² - 5(x + y) = - 6 - y²
<=> (x + y)² - 5(x + y) + 25/4 = 25/4 - 6 - y²
<=> (x + y - 5/2)² = (1 - 4y²)/4
<=> (2x + 2y - 5)² = 1 - 4y²
<=> (2x + 2y - 5)² + 4y² = 1 (*)
Từ (*) ta thấy nếu x, y là các số thực thì có vô số cặp (x, y) thỏa.
có thể đề ghi thiếu, ở đây tôi tìm các cặp (x, y) nguyên
*nếu y ≠ 0 thì 4y² ≥ 4, không thỏa (*)
*Vậy y = 0, thay vào (*):
(2x - 5)² = 1
+2x - 5 = -1 => x = 2
+2x - 5 = 1 => x = 3
Vậy có hai cặp nguyên (x, y) thỏa là: (2, 0) và (3, 0)
Tìm các số nguyên \(x,y\) thỏa mãn: \(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)
\(x^2+2xy+7.\left(x+y\right)+2y^2+10=0\)
\(\Leftrightarrow\left(x+y^2\right)+7.\left(x+y\right)+\dfrac{49}{4}+y^2-\dfrac{9}{4}=0\)
\(\Leftrightarrow\left(x+y+\dfrac{7}{2}^2\right)=\dfrac{9}{4}-y^2\)
\(Do\left(x+y+\dfrac{7}{2}^2\right)\ge0\Rightarrow\dfrac{9}{4}-y^2\ge0\Rightarrow y^2\le\dfrac{9}{4}\)
Mà y nguyên \(\Rightarrow\left\{{}\begin{matrix}y^2\\\\y^2=1\end{matrix}\right.=0\)
Thay vào phương trình đầu:
Với \(y=0\Rightarrow x^2+7x+10=0\Rightarrow\left\{{}\begin{matrix}x=-2\\\\\\x=-5\end{matrix}\right.\)
Với \(y=1\Rightarrow x^2+9x+19=0\Rightarrow\) không có x nguyên
Với \(y=-1\Rightarrow x^2+5x+5=0\Rightarrow\) không có x nguyên
Tìm các số nguyên x,y thỏa mãn 2xy2+x+y+1=x2+2y2+xy
Câu hỏi của Fire Sky - Toán lớp 8 - Học toán với OnlineMath Em tham khảo tại link này nhé!