cho tam giác ABC vuông tại A, D thuộc AB; E thuộc AC. gọi M,N,P,Q theo thứ tự là trung điểm của DE,BE,BC,CD. chứng minh rằng : MNPQ là hình chữ nhật
Cho tam giác ABC vuông tại A, kẻ phân giác AD của góc BAC (D thuộc BC)
Cho tam giác ABC vuông tại A, kẻ phân giác AD của góc BAC (D thuộc BC). Hạ DE vuông góc với AB (E thuộc AB), DG vuông góc với AC (G thuộc AC). So sánh GC và GD
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HD vuông góc AB và HE vuông góc AC (D thuộc AB, E thuộc AC). Chứng minh:
a) AD.AB=AE.AC
b) Tam giác AED ~ Tam giác ABC
a: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền BA
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền CA
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: Ta có: \(AD\cdot AB=AE\cdot AC\)
nên \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Do đó: ΔADE\(\sim\)ΔACB
Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM ?
Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?
Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB). Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE
Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?
Cho tam giác ABC cân tại A (góc A < 90 độ).Kẻ BM vuông tại AC (M thuộc AC) , CD vuông tại AB (D thuộc AB). BM và CD cắt nhau tại E.
a, Chứng minh tam giác BDC = tam giác CMD
b, Chứng minh tam giác BCE cân
a. Xét \(2\Delta:\Delta BDC\) và \(\Delta CMD\) có:
\(\left\{{}\begin{matrix}\widehat{B}=\widehat{C}\left(gt\right)\\BC.chung\end{matrix}\right.\)
\(\Rightarrow\Delta BDC=\Delta CMD\) (cạnh huyền - góc nhọn)
b. Vì \(\Delta BDC=\Delta CMD\) (theo câu a)
\(\Rightarrow\widehat{DCB}=\widehat{MBC}\) (2 góc tương ứng)
\(\Rightarrow\Delta BCE\) cân tại E
BÀI 3 Cho tam giác ABC vuông tại C có góc A=60 độ và đường phân giác của góc BAC cắt BC tại E . Kẻ EK vuông góc AB tại K (K thuộc AB).Kẻ BD vuông góc với AE tại D (D thuộc AE ) chứng minh a) TAm giác ACE bằng tam giác AKE b) AE là đường trung trực của đoạn thẳng CK c)KA=KB d)EB>EC
Cho ABC vuông tại A, biết AB =3cm; AC =4cm. a) Tính BC.So sánh các cạnh của tam giác ABC b) Vẽ phân giác BD của góc ABC (D thuộc AC),từ D vẽ DE trung điểm BC(E thuộc BC) c) ED cắt AB tại F.Chứng minh tam giác ADF=tam giác EDC d) Chứng minh AB+AF
a: BC=căn 3^2+4^2=5cm
b,d: Đề bài yêu cầu gì?
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
cho tam giác ABC vuông tại A có AB=9cm, AC=12cm. Kẻ đường cao AH và đường phân giác AI của tam giác ABC a) chứng minh tam giác HBA ~ tam giác ABC b) tính độ dài BC,BI c) kẻ HD vuông góc AB và HE vuông góc AC (D thuộc AB, E thuộc AC). chứng minh tam giác AED~ tam giác ABC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
=>ΔADE\(\sim\)ΔACB
cho tam giác abc cân tại a( góc a nhỏ hơn 90độ) vẽ đường cao ad của tam giác abc .
a)chứng minh tam giác ABD = tam giác ACD, từ đó chứng minh D là trung điểm BC
b)từ D vẽ DE vuông góc với AB tại E(E thuộc AB),vẽ DF vuông góc với AC tại F(F thuộc AC).Chứng minh tam giác AEF cân
c) gọi I là trung điểm của AB, CI cắt AD tại K. Chứng minh CI + @AD lớn hơn 3AI.
a: Xét ΔABD vuông tại D và ΔACD vuông tại C có
AB=AC
AD chung
Do đó: ΔABD=ΔACD
=>DB=DC
=>D là trung điểm của BC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)(ΔABD=ΔACD)
Do đó: ΔAED=ΔAFD
=>AE=AF
=>ΔAEF cân tại A
cho tam giác ABC vuông cân tại A. Dựng tam giác DEF vuông cân tại D có D thuộc AB, E thuộc AC, F thuộc BC. chứng minh: \(_{S_{DEF}=\frac{1}{5}S_{ABC}}\)
Cho ABC vuông tại A, biết AB =3cm; AC =4cm. a) Tính BC.So sánh các cạnh của tam giác ABC b) Vẽ phân giác BD của góc ABC (D thuộc AC),từ D vẽ DE trung điểm BC(E thuộc BC) c) ED cắt AB tại F.Chứng minh tam giác ADF=tam giác EDC d) Chứng minh AB+AF
a: BC=căn 3^2+4^2=5cm
AB<AC<BC
=>góc C<góc B<góc A
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC