Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai Chi
Xem chi tiết
Băng Di
Xem chi tiết
Duong Thanh Minh
31 tháng 5 2017 lúc 21:31

lon hon 1 nha ban

Thanh Tùng DZ
31 tháng 5 2017 lúc 21:34

sửa lại đề : Chứng tỏ rằng : A = \(\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}< 1\)

bài làm

A = \(\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}\)

A = \(\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{2014-1}{2014!}\)

A = \(1-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{2014}{2014!}-\frac{1}{2014!}\)

A = \(1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2013!}-\frac{1}{2014!}\)

A = \(1-\frac{1}{2014!}< 1\)

minh triet
31 tháng 5 2017 lúc 21:36

lớn hơn 1 nha.

Nhật Hạ
Xem chi tiết
Trần Nhật Dương
10 tháng 5 2019 lúc 9:22

\(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

.......................................

\(\frac{1}{2014^2}=\frac{1}{2014\cdot2014}< \frac{1}{2013\cdot2014}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2013\cdot2014}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(\Rightarrow A< 1-\frac{1}{2014}=\frac{2013}{2014}\)

Kan
10 tháng 5 2019 lúc 9:24

Trần Nhật Dương    Chứng minh \(A< \frac{3}{4}\) mà :)) 

Bùi Yến Nhi
10 tháng 5 2019 lúc 9:35

Ta có: \(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)

      ........................

\(\frac{1}{2014^2}=\frac{1}{2014.2014}< \frac{1}{2013.2014}\)

 \(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)

\(\Leftrightarrow A< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(\Leftrightarrow A< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{2014}\)

\(\Leftrightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{2014}\)

\(\Leftrightarrow A< \frac{3}{4}-\frac{1}{2014}< \frac{3}{4}\)

Cây bắp cải
Xem chi tiết
Cây bắp cải
19 tháng 3 2019 lúc 19:48

Đề thi đó

Nguyễn Đức Trường
Xem chi tiết
BRILLIANT!!!!
17 tháng 9 lúc 22:11

có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 +  2^10]

Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]

Q = 2 . 3+2^3 .3 +... + 2^9 .3

Q = 3. [ 2 + 2^3 +... + 2^9]

Vậy Q chia hết cho 3

Nguyễn Thanh Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2020 lúc 10:48

Ta có: \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)

\(=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\right)\)

Nhận xét: \(\frac{1}{2^2}=\frac{1}{4}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

\(\frac{1}{5^2}< \frac{1}{4\cdot5}\)

...

\(\frac{1}{2014^2}< \frac{1}{2013\cdot2014}\)

Do đó: \(\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\right)< \frac{1}{4}+\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2013\cdot2014}\right)\)

\(\Leftrightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(\Leftrightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{2014}\)

\(\Leftrightarrow A< \frac{3019}{4028}\)

\(\frac{3019}{4028}< \frac{3021}{4028}=\frac{3}{4}\)

nên \(A< \frac{3}{4}\)(đpcm)

không quan tâm
Xem chi tiết
zZz Cool Kid_new zZz
10 tháng 5 2019 lúc 12:26

Ta có:

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2014^2}\)

\(< \frac{1}{4}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{2013\cdot2014}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{2013}-\frac{1}{2014}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2014}\)

\(=\frac{3}{4}-\frac{1}{2014}\)

\(< \frac{3}{4}\)

0o0_Cô Nàng Năng Động_0o...
Xem chi tiết
Phùng Minh Quân
18 tháng 4 2018 lúc 11:03

Ta có : 

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+3}+...+\frac{1}{1+2+3+...+99}\)

\(A=\frac{1}{\frac{2\left(2+1\right)}{2}}+\frac{1}{\frac{3\left(3+1\right)}{2}}+\frac{1}{\frac{4\left(4+1\right)}{2}}+...+\frac{1}{\frac{99\left(99+1\right)}{2}}\)

\(A=\frac{2}{2\left(2+1\right)}+\frac{2}{3\left(3+1\right)}+\frac{2}{4\left(4+1\right)}+...+\frac{2}{99\left(99+1\right)}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}\)

\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(A=2.\frac{49}{100}\)

\(A=\frac{49}{50}\)

Lại có : 

\(\frac{1}{2^2}>\frac{1}{2.3}\)

\(\frac{1}{3^2}>\frac{1}{3.4}\)

\(\frac{1}{4^2}>\frac{1}{4.5}\)

\(............\)

\(\frac{1}{49^2}>\frac{1}{49.50}\)

\(\Rightarrow\)\(B=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{49^2}>1+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

\(B>1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

\(B>1+\frac{1}{2}-\frac{1}{50}\)

\(B>1+\frac{12}{25}=\frac{37}{25}=\frac{74}{50}>\frac{49}{50}=A\)

\(\Rightarrow\)\(B>A\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

Nguyễn Đức Trường
Xem chi tiết
Hiếu
6 tháng 4 2018 lúc 20:31

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

........

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

=> \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n-1\right)}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)

Đpcm 

Hoàng Nguyễn Văn
14 tháng 3 2019 lúc 18:25

b)B=1/4(1/2^2+1/3^2+...+1/n^2)=1/4*A<1/4

Hà Yến Nhi
14 tháng 3 2019 lúc 18:34

tìm 2 số 3:

88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888838888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888838888888888888888888888888888888888888888888888888888888888888888888888888888