Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
le thi quynh nhu
Xem chi tiết
nhok siêu quậy
Xem chi tiết
Trịnh Thu Yến
3 tháng 4 2017 lúc 21:41

-20/147

ღƘα Ƙαღ
22 tháng 2 2020 lúc 9:11

=\(\frac{-4}{15}\)

Khách vãng lai đã xóa
𝑳â𝒎 𝑵𝒉𝒊
29 tháng 2 2020 lúc 16:51

\(\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{35}\right)\cdot\left(\frac{-4}{15}\right)}{\left(\frac{1}{10}+\frac{3\sqrt{2}}{25}-\frac{\sqrt{2}}{5}\right)\cdot\frac{5}{7}}\)

\(=-\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{35}\right)\cdot\frac{4}{15}}{\left(\frac{1}{10}+\frac{3\sqrt{2}}{25}-\frac{\sqrt{2}}{5}\right)\cdot\frac{5}{7}}\)

\(=-\frac{\frac{4}{15}\cdot\frac{5-4\sqrt{2}}{70}}{\frac{5}{7}\cdot\frac{5-4\sqrt{2}}{50}}\)

\(=-\frac{4\left(5-4\sqrt{2}\right)}{15\left(5-4\sqrt{2}\right)}\)

\(=-\frac{4}{15}\)

Khách vãng lai đã xóa
Nguyễn Thị Yến
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 21:04

b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)

\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)

\(=4\left(7+3\sqrt{5}\right)\)

\(=28+12\sqrt{5}\)

Akai Haruma
5 tháng 10 2021 lúc 21:21

Lời giải:

a. 

$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$

$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$

$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$

$=2\sqrt{5}-5\sqrt{10}$

$\Rightarrow A=\sqrt{10}-5\sqrt{5}$

b.

$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$

$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$

$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$

$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$

$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$

$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$

$\Rightarrow B=28+12\sqrt{5}$

c.

$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$

$=(7-5)(6-\sqrt{35})$

$=2(6-\sqrt{35})=12-2\sqrt{35}$

daosaclemthaisuhao
Xem chi tiết
ngonhuminh
30 tháng 11 2016 lúc 20:30

A=\(\sqrt{\frac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}.3\sqrt{2}+\sqrt{14}=\sqrt{\frac{\sqrt{5}}{\sqrt{5}\left(8+3\sqrt{7}\right)}}.\sqrt{2}\left(3+\sqrt{7}\right)\)

\(8>3.\sqrt{7}\Rightarrow8-3\sqrt{7}>0\left(lienhop\right)\left(8-3\sqrt{7}\right)\)

\(A=\sqrt{\left(8-3.\sqrt{7}\right)}.\sqrt{2}\left(3+\sqrt{7}\right)\)

\(A=\sqrt{\left(16-2.3.\sqrt{7}\right)}.\left(3+\sqrt{7}\right)\)

\(A=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}.\left(3+\sqrt{7}\right)\)

\(A=\sqrt{\left(3-\sqrt{7}\right)^2}\left(3+\sqrt{7}\right)\)

\(3-\sqrt{7}>0\)

\(\Rightarrow A=\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)=9-7=2\)

Cá Chinh Chẹppp
Xem chi tiết
duc99duc
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 10 2021 lúc 19:39

\(=\sqrt{\dfrac{\sqrt{5}}{\sqrt{5}\left(8+3\sqrt{7}\right)}}\cdot\sqrt{2}\left(3+\sqrt{7}\right)\\ =\sqrt{\dfrac{2\left(3+\sqrt{7}\right)^2}{8+3\sqrt{7}}}=\sqrt{\dfrac{32+12\sqrt{7}}{8+3\sqrt{7}}}\\ =\sqrt{\dfrac{4\left(8+3\sqrt{7}\right)}{8+3\sqrt{7}}}=\sqrt{4}=2\)

Cá Chinh Chẹppp
Xem chi tiết
Phạm Thế Mạnh
17 tháng 12 2015 lúc 21:06

\(A=\sqrt{\frac{1}{8+3\sqrt{7}}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(A=\sqrt{\frac{2}{16+6\sqrt{7}}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(A=\frac{\sqrt{2}}{3+\sqrt{7}}\left(3+\sqrt{7}\right)\sqrt{2}\)
\(A=2\)

Trần Vũ
Xem chi tiết
Tiến Dũng Trương
25 tháng 8 2017 lúc 5:42

tu lam di cau nao kho thi hoi hoi vay ko ai tra loi cho dau

cau e)

\(A=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\)(suy ra A>=0)

\(A^2=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)

\(A^2=1\)

A=1

(bai toan co nhieu cach)

cau m)

\(=\frac{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)

\(=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{2}}\)

\(=1\)

cau G)

\(=\frac{5\sqrt{7}}{\sqrt{35}}-\frac{7\sqrt{5}}{\sqrt{35}}+\frac{2\sqrt{70}}{\sqrt{35}}\)

\(=\frac{5}{\sqrt{5}}-\frac{7}{\sqrt{7}}+2\sqrt{2}\)

\(=\sqrt{5}-\sqrt{7}+2\sqrt{2}\)

Nguyễn Minh Phương
Xem chi tiết
Khánh Lê
27 tháng 6 2017 lúc 15:40

1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)

\(=7-2\sqrt{4\sqrt{7}}\)

Trần Đặng Xuân Quyên
29 tháng 5 2018 lúc 15:20

cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với