\(\sqrt{\frac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}\times\left(3\sqrt{2}+\sqrt{14}\right)\)
thực hiện phép tính:
\(\left(\sqrt{3}-2\right)\times\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2+\sqrt{3}}\)
\(\sqrt{\frac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}\times\left(3\sqrt{2}+\sqrt{14}\right)\)
\(\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{35}\right)\times\left(\frac{-4}{15}\right)}{\left(\frac{1}{10}+\frac{3\sqrt{2}}{25}-\frac{\sqrt{2}}{5}\right)\times\frac{5}{7}}\)
\(\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{35}\right)\cdot\left(\frac{-4}{15}\right)}{\left(\frac{1}{10}+\frac{3\sqrt{2}}{25}-\frac{\sqrt{2}}{5}\right)\cdot\frac{5}{7}}\)
\(=-\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{35}\right)\cdot\frac{4}{15}}{\left(\frac{1}{10}+\frac{3\sqrt{2}}{25}-\frac{\sqrt{2}}{5}\right)\cdot\frac{5}{7}}\)
\(=-\frac{\frac{4}{15}\cdot\frac{5-4\sqrt{2}}{70}}{\frac{5}{7}\cdot\frac{5-4\sqrt{2}}{50}}\)
\(=-\frac{4\left(5-4\sqrt{2}\right)}{15\left(5-4\sqrt{2}\right)}\)
\(=-\frac{4}{15}\)
rút gọn
a) \(\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}\)
b) \(\left(\sqrt{7-3\sqrt{5}}\right)\left(7+3\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{10}\right)\)
c) \(\left(\sqrt{14}-\sqrt{10}\right)\left(6-\sqrt{35}\right)\left(\sqrt{6+\sqrt{35}}\right)\)
b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)
\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)
\(=4\left(7+3\sqrt{5}\right)\)
\(=28+12\sqrt{5}\)
Lời giải:
a.
$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$
$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$
$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$
$=2\sqrt{5}-5\sqrt{10}$
$\Rightarrow A=\sqrt{10}-5\sqrt{5}$
b.
$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$
$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$
$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$
$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$
$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$
$\Rightarrow B=28+12\sqrt{5}$
c.
$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}
$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$
$=(7-5)(6-\sqrt{35})$
$=2(6-\sqrt{35})=12-2\sqrt{35}$
\(\sqrt{\frac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}\cdot\left(3\sqrt{2}+\sqrt{14}\right)\)
ai júp mk vs!!
A=\(\sqrt{\frac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}.3\sqrt{2}+\sqrt{14}=\sqrt{\frac{\sqrt{5}}{\sqrt{5}\left(8+3\sqrt{7}\right)}}.\sqrt{2}\left(3+\sqrt{7}\right)\)
\(8>3.\sqrt{7}\Rightarrow8-3\sqrt{7}>0\left(lienhop\right)\left(8-3\sqrt{7}\right)\)
\(A=\sqrt{\left(8-3.\sqrt{7}\right)}.\sqrt{2}\left(3+\sqrt{7}\right)\)
\(A=\sqrt{\left(16-2.3.\sqrt{7}\right)}.\left(3+\sqrt{7}\right)\)
\(A=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}.\left(3+\sqrt{7}\right)\)
\(A=\sqrt{\left(3-\sqrt{7}\right)^2}\left(3+\sqrt{7}\right)\)
\(3-\sqrt{7}>0\)
\(\Rightarrow A=\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)=9-7=2\)
Tính
\(A=\sqrt{\frac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(\sqrt{\dfrac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}\cdot\left(3\sqrt{2}+\sqrt{14}\right)\)
\(=\sqrt{\dfrac{\sqrt{5}}{\sqrt{5}\left(8+3\sqrt{7}\right)}}\cdot\sqrt{2}\left(3+\sqrt{7}\right)\\ =\sqrt{\dfrac{2\left(3+\sqrt{7}\right)^2}{8+3\sqrt{7}}}=\sqrt{\dfrac{32+12\sqrt{7}}{8+3\sqrt{7}}}\\ =\sqrt{\dfrac{4\left(8+3\sqrt{7}\right)}{8+3\sqrt{7}}}=\sqrt{4}=2\)
\(A=\sqrt{\frac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}\left(3\sqrt{2}+\sqrt{14}\right)\)
Tính A
\(A=\sqrt{\frac{1}{8+3\sqrt{7}}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(A=\sqrt{\frac{2}{16+6\sqrt{7}}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(A=\frac{\sqrt{2}}{3+\sqrt{7}}\left(3+\sqrt{7}\right)\sqrt{2}\)
\(A=2\)
Rút gọn các biểu thức sau :
a,\(\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{6}+\sqrt{2}}\)
b \(\left(\sqrt{20}-\sqrt{45}+\sqrt{5}\right).\sqrt{5}\)
c,\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}+\sqrt{5}}\right):2\sqrt{5}\)
d \(2\sqrt{3}\left(2\sqrt{6}-\sqrt{3}+1\right)\)
e \(\sqrt{2+\sqrt{3}}\times\sqrt{2-\sqrt{3}}\)
g \(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
h \(\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}\right)\times\sqrt{6}\)
i \(\left(1+\sqrt{2}+\sqrt{3}\right)\times\left(1+\sqrt{2}-\sqrt{3}\right)\)
k \(\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)
l \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
m \(\frac{\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
tu lam di cau nao kho thi hoi hoi vay ko ai tra loi cho dau
cau e)
\(A=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\)(suy ra A>=0)
\(A^2=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)
\(A^2=1\)
A=1
(bai toan co nhieu cach)
cau m)
\(=\frac{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{2}}\)
\(=1\)
cau G)
\(=\frac{5\sqrt{7}}{\sqrt{35}}-\frac{7\sqrt{5}}{\sqrt{35}}+\frac{2\sqrt{70}}{\sqrt{35}}\)
\(=\frac{5}{\sqrt{5}}-\frac{7}{\sqrt{7}}+2\sqrt{2}\)
\(=\sqrt{5}-\sqrt{7}+2\sqrt{2}\)
Rút gọn
\(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}-2\sqrt{4\sqrt{7}}\)\(\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}\)\(\left(\sqrt{14}-\sqrt{10}\right)\left(6-\sqrt{35}\right)\sqrt{6+\sqrt{35}}\)\(\left(\sqrt{2}+1\right)\left(\sqrt{3}-1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)\(\sqrt{7-3\sqrt{5}}\left(7+3\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{10}\right)\)1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)
\(=7-2\sqrt{4\sqrt{7}}\)
cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với