Chứng tỏ rằng đa thức r(x)=x\(^4\)-2x-5 không có nghiệm.
Cho đa thức : x^4 + 2x^2 + 1
Chứng tỏ rằng đa thức trên không có nghiệm
Help me !!
Mai mik nộp r
Ta có \(x^4+2x^2+1=\left(x^2+1\right)^2\)
Ta thấy \(\left(x^2+1\right)^2>0\forall x\)
\(\Rightarrow\)đa thức trên không có nghiệm
Vậy ...
Chứng tỏ rằng đa thức A(x)=x^4+2x^2+1 không có nghiệm
mk giải cách lớp 7:
A(x) = x4 + 2x2 + 1
vì \(x^4\ge0\) với mọi x
\(2x^2\ge0\) với mọi x
=> \(x^4+2x^2+1\ge1>0\)
=> đa thức A(x) ko có nghiệm
cách lớp 8. bạn đặt ẩn phụ la x2. đưa nó về bậc 2. rồi dùng đen ta là ra: nó sẽ ra đen ta <0 thì đa thức trên vô nghiêm. dễ mà. mà bạn biết đen ta rồi chứ. Đen ta = b2-4ac. hoac đen ta phẩy= b2-ac. 100% là ra
a) Tìm nghiệm của đa thức P(x) = 3x + 21
b) Chứng tỏ rằng đa thức Q(x) = 2x4 + x + 2011 không có nghiệm dương
a) Tìm nghiệm của đa thức :
\(P\left(x\right)=3x+21\)
\(3x+21=0\)
\(3x=-21\)
\(x=-7\)
Do đó ta có: \(P\left(-7\right)=0\)
Vậy x=-7 là nghiệm của đa thức P(x)=3x+21
b) \(Q\left(x\right)=2x^4+x+2019\)
Với mọi x>0 ta có:
\(Q\left(x\right)=2x^4+x+2019>2.0+0+2019=2019\) với mọi x>0
=> Đa thức trên không có nghiệm dương
Chứng tỏ rằng đa thức A(x)=x4+2x2+1 không có nghiệm
A(x) \(=x^4+2x^2+1\)
\(=x^4+x^2+x^2+1\)
\(=x^2.\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+1\right).\left(x^2+1\right)\)
\(=\left(x^2+1\right)^2\)
Mà \(x^2+1\ge1\) => \(\left(x^2+1\right)^2\ge1^2\)
Vậy đa thức vô nghiệm.
A(x) = x^4 + 2x^2 + 1
vì \(x^4\ge0\) với mọi x
\(2x^2\ge0\) với mọi x
\(\Rightarrow x^4+2x^2+1\ge1>0\)
=> đa thức A(x) không có nghiệm
a, tìm nghiệm của đa thức P(x) =3x-12
b,chứng tỏ rằng đa thức Q(x)=2x^2+1 không có nghiệm
c,xác định a để đ+x^2+2x-8nhận 4 làm nghiệm
a) P (x) = 3x-12 = 0
3x = 0+12
3x=12
x = 4
vay nghiem cua da thuc P (x) = 4
b) xet : x^2 > 0 => 2x^2>0
vay da thuc Q(x) khong co nghiem
a/ nghiệm cua đa thức p(x) tại giá trị P(x)=0
P(X)=3x-12=0
vậy x=4
b/Q(x)=2x^2+1
vì 2x^2>hoặc =0 suy ra 2x^2+1>hoặc =1 khác 0
vậy đa thức Q(x) không có nghiện
BẠN THẤY ĐÚNG THÌ K CHO MÌNH NHÉ.... BẠN XEM LẠI ĐỀ CÂU C RỒI MÌNH GIẢI CHO
chứng tỏ rằng đa thức f(x)=x^2+2x+3 không có nghiệm
x^2+2x+3 = (x^2+2x+1) + 2 = (x+1)^2 +2
Mà (x+1)^2 \(\ge\)0
=> (x+1)^2 +2 \(\ge\)0 + 2 = 2 > 0
Suy ra đa thức vô nghiệm
ta có:x2>0 với mọi x; 2x > 0 với mọi x; 3 >0
=> x2 + 2x + 3 > 0
=> đa thức trên ko có nghiệm
Chúc bn hok tốt!!!^^
\(Ta\)\(có\):
\(x^2\ge0\)với x bất kì
\(2x\ge0\)với x bất kì
\(3>0\)
\(\Rightarrow\)f(x)=x^2+2x+3>0 với x bất kì
Vậy M(x) không có nghiệm
A(x) = 5x mũ 3+ 2x mũ 4 - x mũ 2 +3x mũ 2 -x mũ 3 -2x mũ 4 + 1 - 2x mũ 3
a, chứng tỏ rằng đa thức A(x) không có nghiệm
Chứng tỏ rằng đa thức x^2+2x+2 không có nghiệm
Ta có: x^2 >= 0 với mọi x
2*x >= 0 với mioj x
=> x^2 + 2*x +2 >= 2 với mọi x
=> x^2 + 2*x + 2 không có nghiệm
ta có : x2 lớn hơn hoặc bằng 0. với mọi x
suy ra x2 +2x +2 lớn hơn 0. với mọi x
suy ra x^2 +2x+2 k có ngiệm
\(x^2+2x-8=x^2+2x+1-9\)
mà : \(x^2+2x+1=x^2+x+x+1=x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)^2\)
\(=\left(x+1\right)^2-9=\left(x+1-3\right)\left(x+1+3\right)=\left(x-2\right)\left(x+4\right)\)
giả sử đa thức trên có nghiệm khi
Đặt \(\left(x-2\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=2\)
Vậy giả sử là đúng hay ko xảy ra đpcm ( đa thức trên ko có nghiệm )