giả pt:
2( x^2 +1-1)^2 - 5(x^2+x-1)(x^2-x+1) +2(x^2-x+1)=0
Cho pt: x2+2(m-2)x- m2-5=0 (1)
Tìm các giá trị của m để pt có 2 nghiệm x1,x2 (giả sử x1< x2) thỏa mãn |x1|- |x2+1|=5
Theo Viet: \(x_1+x_2=-2\left(m-2\right)\)
Do \(ac=-m^2-5< 0\) \(\forall m\Rightarrow\) pt luôn luôn có 2 nghiệm trái dấu
Mà \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=-x_1\\\left|x_2+1\right|=x_2+1\end{matrix}\right.\)
\(\left|x_1\right|-\left|x_2+1\right|=5\)
\(\Leftrightarrow-x_1-x_2-1=5\)
\(\Leftrightarrow x_1+x_2=-6\)
\(\Leftrightarrow-2\left(m-2\right)=-6\Rightarrow m=5\)
Giúp tớ với.
Bài 1 : cho pt : 4x^2 - 25 + k^2 + 4kx = 0
1. Giải pt với k =0
2. Giải pt với k = -3
3. Tìm các giá trị của k để pt nhận nghiệm là 2.
Bài 2 : Tính
1. x + 1/x-1 ( dấu / là phân số nhé ) - x-1/ x+1 = 16/x^2 - 1
2. 12/x^2-4 - x+1/x-2 + x+7/x+2 = 0
3. 12/8+x^3 = 1 + 1/1+2
4. x + 25/2x^2-50 - x+5/x^2-5x = 5-x/2x^2+10
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
Giải các hệ pt và các pt sau:
1. (x+1)(y-1)=xy+4 (1)
(2x-4)(y+1)=2xy+5(2)
2. \(x^2+x-2\sqrt{x^2+x+1}+2=0\)
1.
HPT \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)
Vậy.............
2.
ĐKXĐ: $x\in\mathbb{R}$
$x^2+x-2\sqrt{x^2+x+1}+2=0$
$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$
$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$
$\Rightarrow \sqrt{x^2+x+1}=1$
$\Rightarrow x^2+x=0$
$\Leftrightarrow x(x+1)=0$
$\Rightarrow x=0$ hoặc $x=-1$
Giải PT:
20(\(\dfrac{x-2}{x+1}\))2 - 5(\(\dfrac{x+2}{x-1}\))2 + 48\(\dfrac{x^2-4}{x^2-1}\) = 0
`20((x-2)/(x+1))^2-5((x+2)/(x-1))^2+48(x^2-4)/(x^2-1)=0(x ne +-1)`
Đặt `(x-2)/(x+1)=a,(x+2)/(x-1)=b`
`pt<=>20a^2-5b^2+48ab=0`
`<=>20a^2+48ab-5b^2=0`
`<=>20a^2-2ab+50ab-5b^2=0`
`<=>2a(a-10b)+5b(10a-b)=0`
`<=>(a-10b)(2a+5b)=0`
Đến đây dễ rồi bạn tự giải tiếp.
ĐKXĐ: x \(\ne\)\(\pm\)1
Ta có: \(20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\cdot\dfrac{x^2-4}{x^2-1}=0\)
Đặt: \(\dfrac{x-2}{x+1}=a\) ; \(\dfrac{x+2}{x-1}=b\)
=> ab = \(\dfrac{x^2-4}{x^2-1}\)
Do đó, ta có pt mới: 20a2 - 5b2 + 48ab = 0
<=> 20a2 + 50ab - 2ab - 5b2 = 0
<=> (10a - b)(2a + 5b) = 0
<=> \(\left[{}\begin{matrix}10a=b\\2a=-5b\end{matrix}\right.\)
TH1: 10a = b => \(10\cdot\dfrac{x-2}{x+1}=\dfrac{x+2}{x-1}\)
<=> 10(x - 2)(x - 1) = (x + 2)(x + 1)
<=> 10x2 - 30x + 20 = x2 + 3x + 2
<=> 9x2 - 33x + 18 = 0
<=> 9x2 - 27x - 6x + 18 = 0
<=> (9x - 6)(x - 3) = 0
<=> \(\left[{}\begin{matrix}x=3\\x=\dfrac{2}{3}\end{matrix}\right.\)(tm)
TH2: \(2a=-5b\)=> \(2\cdot\dfrac{x-2}{x+1}=-5\cdot\dfrac{x+2}{x-1}\)
=> (2x - 4)(x - 1) = (-5x - 10)(x + 1)
<=> 2x2 - 6x + 4 = -5x2 - 15x - 10
<=> 7x2 + 9x + 14 = 0
=> pt vn
1. Lập pt có 2 nghiệm là x1 = 3 ; x2 = 5
2. Cho pt: x2 - 3x + 2 = 0 có nghiệm phân biệt x1, x2. Ko giải pt, lập pt mới có 2 nghiệm là x2 + 1/x1 và x1 + 1/x2
cho 2 pt: (x-2)^2 - 5x + 1 = (x-1) (x+1) và (m^2-1)x + 5m + 5 = 0 ( II ) ( m là tham số ). tìm m để 2 pt trên là 2 pt tương đương
xin lỗi mình cx chua làm đc
khi nào có ai làm đc thì nhớ kêu mik vs
vs lại ra câu hỏi ngắn thôi!!!!
1. Cho pt: x2 - 2(m-1)x + 2m - 5 =0 (1).
Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn :(x12-2mx1 + 2m -1)(x2 -2) < 0
2.Cho pt: x2-(2m-1)x + m2-1 = 0 (2)
Tìm m để pt (2) có 2no x1, x2 thỏa mãn (x1- x2 )2 =x1- 3x2
các bn ơi giúp mk với ! Cảm ơn trước ạ.
giải pt
a 3x(x-1)+2(x-1)=0
b x^2-1-(x+5)(2-x)=0
c 2x^3 +4x^2-x^2+2=0
d x(2x-3)-4x+6=0
e x^3-1=x(x-1)
f (2x-5)^2 -x^2-4x-4=0
h (x-2)(x^2+3x-2)-x^3+8=0
a) 3x(x - 1) + 2(x - 1) = 0
<=> (3x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}3x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=1\end{cases}}\)
Vậy S = {-2/3; 1}
b) x2 - 1 - (x + 5)(2 - x) = 0
<=> x2 - 1 - 2x + x2 - 10 + 5x = 0
<=> 2x2 + 3x - 11 = 0
<=> 2(x2 + 3/2x + 9/16 - 97/16) = 0
<=> (x + 3/4)2 - 97/16 = 0
<=> \(\orbr{\begin{cases}x+\frac{3}{4}=\frac{\sqrt{97}}{4}\\x+\frac{3}{4}=-\frac{\sqrt{97}}{4}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{\sqrt{97}-3}{4}\\x=-\frac{\sqrt{97}-3}{4}\end{cases}}\)
Vậy S = {\(\frac{\sqrt{97}-3}{4}\); \(-\frac{\sqrt{97}-3}{4}\)
d) x(2x - 3) - 4x + 6 = 0
<=> x(2x - 3) - 2(2x - 3) = 0
<=> (x - 2)(2x - 3) = 0
<=> \(\orbr{\begin{cases}x-2=0\\2x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
Vậy S = {2; 3/2}
e) x3 - 1 = x(x - 1)
<=> (x - 1)(x2 + x + 1) - x(x - 1) = 0
<=> (x - 1)(x2 + x + 1 - x) = 0
<=> (x - 1)(x2 + 1) = 0
<=> x - 1 = 0
<=> x = 1
Vậy S = {1}
f) (2x - 5)2 - x2 - 4x - 4 = 0
<=> (2x - 5)2 - (x + 2)2 = 0
<=> (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
<=> (x - 7)(3x - 3) = 0
<=> \(\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Vậy S = {7; 1}
h) (x - 2)(x2 + 3x - 2) - x3 + 8 = 0
<=> (x - 2)(x2 + 3x - 2) - (x- 2)(x2 + 2x + 4) = 0
<=> (x - 2)(x2 + 3x - 2 - x2 - 2x - 4) = 0
<=> (x - 2)(x - 6) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
Vậy S = {2; 6}
\(a,3x\left(x-1\right)+2\left(x-1\right)=0\)
\(3x.x-3x+2x-2=0\)
\(2x-2=0\)
\(2x=2\)
\(x=1\)
trong các pt sau, pt nào la pt bậc nhất 1 ẩn:
A. x+x^2 =0 B. 1/x + 1 =0 C. 1/2.x -2 =0 D. (x+3)(2x-1) =0