Tìm x,y biết
\(x^2\) - \(2y^2\) -1 = 0
tìm x, y biết :
a, x^2 - 4x + y^2 +2y +5 = 0
b, x^2 + 2y^2 + 2xy -2y +1 =0
c, x^2 + 2y^2 +2xy = 2y - 2
GIÚP MÌNH NHA
a/ (x^2-4x+4)+(y^2+2y+1)=0
<=> (x-2x)^2+(y+1)^2 = 0 Vậy x=2 và y = -1
b/ (x^2+2xy+y^2) + ( y^2-2y+1) = 0
<=> (x+y)^2 + (y-1)^2 = 0 Vậy x=y=1
a) { x^2 - 4x +4 } +{y^2+2x+1}=0
<=>{ x - 2x}^2+{y+1}^2=0 Vậy x =2 vầy =-1
b) { x^2 +2xy +y^2} +{y^2 - 2y +1=0}
<=> {x+y}^2+{ y - 1 }^2 =0 Vậy x=y=1.
NHA BẠN!
tìm x y biết y^2+2y+4^x-2^(x+1)+2 = 0
Tìm x, y biết:
a. (x-1)^2 + (y+3)^2 = 0
b. 2(x-5)^4 + 5|2y-7|^5 = 0
c. 3(x- 2y)^2004 + 4|y+1/2| = 0
d. |x+3y-1| + (2y-1/2)^2000 = 0
nhanh lên mình cần gấp lắm!
tìm x,y biết : \(x^2+2y^2+2xy-2y+1=0\)0
\(x^2+2y^2+2xy-2y+1=0\)
\(\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)
\(\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
\(x^2+2y^2+2xy-2y+1=0\)
\(\Rightarrow x^2+2xy+y^2+y^2-2y+1=0\)
\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-y\left(1\right)\\y=1\end{cases}}\)
Từ (1) ta được x=-1;y=1
\(x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+y^2+y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x+y=0\\y-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\y=1\end{cases}}}\)
vậy x=-1; y=1
Tìm x,y biết:
a,2x^2+y^2+2xy+10x+25=0
b,x^2+3y^2+2xy-2y+1=0
c,x^2+2y^2+2xy-2x+2=0
a) \(2x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)
Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)
b)\(x^2+3y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)
nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Mà\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
nên pt vô nghiệm
a) 2x2 + y2 + 2xy + 10x + 25 = 0
=> (x2 + 2xy + y2) + (x2 + 10x + 25) = 0
=> (x + y)2 + (x + 5)2 = 0
<=> \(\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\) <=> \(\hept{\begin{cases}y=-x\\x=-5\end{cases}}\) <=> \(\hept{\begin{cases}y=5\\x=-5\end{cases}}\)
b)c) xem lại đề
Tìm số nguyên x; y biết
x.y = - 21
(x+1).(y+2) = 7
x.(2y+1) = 6
xy - 2x - 2y = 0
HELP ME!!!!!!!!
a)
x | 1 | -1 | 12 | -12 | 2 | -2 | 6 | -6 | 3 | -3 | 4 | -4 |
y-3 | -12 | 12 | -1 | 1 | -6 | 6 | -2 | 2 | -4 | 4 | -3 | 3 |
y | -9 | 15 | 2 | 4 | -3 | 9 | 1 | 5 | -1 | 7 | 0 | 6 |
b)
x | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
y | -21 | 21 | -7 | 7 | -3 | 3 | -1 | 1 |
c)
2x-1 | 1 | -1 | 5 | -5 | 7 | -7 | 35 | -35 |
2y+1 | -35 | 35 | -7 | 7 | -5 | 5 | -1 | 1 |
x | 1 | 0 | 3 | -2 | 4 | -3 | 18 | -17 |
y | -18 | 17 | -4 | 3 | -3 | 2 | -1 | 0 |
e)
2x+1 | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
3y-2 | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
x | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
y | loại | 19 | -3 | loại | -1 | loại | loại | 1 |
Những câu còn lại mk hổng bt làm đâu
Tìm x,y biết :
a)|x-1/2|+|3-2y|=0
b)2|x-3/2|+y^2=0
c)|x|-x|=0
Tìm x biết : |3 - |x-1| | = 2
Tìm x, y biết 4 |x+3| + |2y - 1| = 0
tìm x,y thuộc , biết ; |x-1|+|y|=0 ; |x+1|+|y-y| = 2 ; (x-3) (1-2y)=5
lx-1l+lyl=0 =>x-1=0 và y=0
lx+1l+ly-yl=2 =>lx+1l+0=2 =>lx+1l=2 =>x+1=2 hoặc x+1=-2 =>x=1 hoặc x=-3
kẻ bảng
Tìm x,y biết :
1 ) | 4 - x | + | 2y +1 | = 0
2) | x - 3 | = | 5 - 2x |
Lời giải:
1.
$|4-x|\geq 0$ với mọi $x$
$|2y+1|\geq 0$ với mọi $y$
Do đó để $|4-x|+|2y+1|=0$ thì $|4-x|=|2y+1|=0$
$\Leftrightarrow x=4; y=\frac{-1}{2}$
2.
$|x-3|=|5-2x|$
$\Leftrightarrow x-3=5-2x$ hoặc $x-3=2x-5$
$\Leftrightarrow x=\frac{8}{3}$ hoặc $x=2$
1 ) | 4 - x | + | 2y +1 | = 0
Trường hợp 1 | Trường hợp 2 |
x+1=0 | 2y-4=0 |
x=0-1 | 2y=0+4 |
x=-1 | 2y=2=>y=2 |
2)
|x−3|=|5−2x||x−3|=|5−2x|
=>x−3=5−2x
=>x−3=5−2x hoặc x−3=2x−5x−3=2x−5
=>x=83
=>x=83 hoặc x=2