giải hệ phương trình bậc nhất hai ẩn (pascal) \(\hept{\begin{cases}ax+by=c\\mx+ny=p\end{cases}}\)
Giải hệ bất phương trình bậc nhất hai ẩn :
\(\hept{\begin{cases}y-2>0\\x+1< 0\end{cases}}\)
\(\hept{\begin{cases}y-2>0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}y>2\\x< -1\end{cases}}\)
Giải hệ bất phương trình bậc nhất hai ẩn
\(\hept{\begin{cases}y-2>0\\x+1< 0\end{cases}}\)
1. Cho \(\hept{\begin{cases}ax+by=3\\ax^2+by^2=5\\ax^3+by^3=9\end{cases}}\)và \(ax^4+by^4=17\). Tính \(ax^5+by^5\)và \(ax^{2017}+by^{2017}\)
2. Giải hệ phương trình:\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)
3. Giải hệ phương trình:\(\hept{\begin{cases}\frac{2}{x}+\frac{3}{y}+\frac{3}{z}=z\\\frac{4}{xy}-\frac{3}{z^2}-\frac{2}{y}=3\end{cases}}\)
Giải và biện luận theo tham số m để hệ phương trình với hai ẩn x va y sau:
\(\hept{\begin{cases}mx+y=1\\3x-\left(m+1\right)y=-3\end{cases}}\)
\(\hept{\begin{cases}mx+y=1\left(1\right)\\3x-\left(m+1\right)y=-3\left(2\right)\end{cases}}\).
Từ phương trình (1) suy ra \(y=1-mx\)
Thay vào phương trình (2),ta có: \(3x-\left(m+1\right)\left(1-mx\right)=-3\)
\(\Leftrightarrow\left(m+1\right)\left(1-mx\right)=3x+3\)
\(\Leftrightarrow-m^3x-mx+m=3x+2\)
\(\Leftrightarrow-m\left(m^2x+x-1\right)-3x=2\)
Với m = 0 phương trình có nghiệm duy nhất: \(x=-\frac{2}{3}\)
Xét tiếp tục với \(m\ne0\) nhé bạn.
Thôi chết giải nhầm.
Giải
Từ phương trình thứ nhất của hệ suy ra \(y=1-mx\)
Thay vào phương trình thức hai của hệ được: \(3x-\left(m+1\right)\left(1-mx\right)=-3\)
\(\Leftrightarrow\left(m+1\right)\left(1-mx\right)=3x+3\)
\(\Leftrightarrow m\left(1-mx\right)+1\left(1-mx\right)=3x+3\)
\(\Leftrightarrow-m^2x-mx+m=3x+2\)
Với m = 0 thì \(PT\Leftrightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)
Với \(m\ne0\) .....giải tiếp ....
^^
giải và biện luận các hệ phương trình sau :
a) \(\hept{\begin{cases}mx-y=2\\2x+y=m\end{cases}}\)
b)\(\hept{\begin{cases}2+mx=3\\3x-2y=2m\end{cases}}\)
giải hệ phương trình:\(\hept{\begin{cases}2x^2-mx-1=0\\mx^2-mx-2=0\end{cases}}\)
Cho hệ phương trình ẩn (x;y), tham số m: \(\hept{\begin{cases}mx+4y=6\\x+my=3\end{cases}}\). Tìm giá trị của m để hệ đã cho có nghiệm duy nhất.
Bài 1: Giải hệ phương trình
a)\(\hept{\begin{cases}2x-y=4\\x+y=4\end{cases}}\)
b) \(\hept{\begin{cases}x-y=1\\x+y=3\end{cases}}\)
Bài 2: Giải các phương trình bậc nhất 2 ẩn sau:
a) \(x-y=2\)
b) \(2x+0y=-4\)
Mấy bạn giúp An những câu này với nhé. An cảm ơn!!!
\(\hept{\begin{cases}2x-y=4\\x+y=4\end{cases}\Rightarrow}\hept{\begin{cases}3x=8\\x+y=4\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{8}{3}\\y=\frac{4}{3}\end{cases}}\)
\(\hept{\begin{cases}x-y=1\\x+y=3\end{cases}\Rightarrow}\hept{\begin{cases}2x=4\\x+y=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=1\end{cases}}\)
cho hệ phương trình\(\hept{\begin{cases}mx-y=2\\3x+my=5\end{cases}}\)
a) giải hệ phương trình khi m=2
b) tìm m để hệ phương trình có nghiệm duy nhất
giúp mình với mình cần nộp trong ngày 17/2/2020
\(a,\)Từ hệ PT trên \(< =>\hept{\begin{cases}2x-y=2\\3x+2y=5\end{cases}}\)
\(< =>\hept{\begin{cases}4x-2y=4\\3x+2y=5\end{cases}}\)
\(< =>\hept{\begin{cases}7x=9\\2x-y=2\end{cases}}\)
\(< =>\hept{\begin{cases}x=\frac{9}{7}\\\frac{18}{7}-y=2\end{cases}}\)
\(< =>\hept{\begin{cases}x=\frac{9}{7}\\y=\frac{4}{7}\end{cases}}\)
Vậy nghiệm của PT trên là ...