Giá trị lớn nhất của biểu thức \(M=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\) là...
tìm giá trị lớn nhất của biểu thức M = \(\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
\(M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)
ta co \(1.\sqrt{x-1}\le\frac{x+1-1}{2}=\frac{x}{2}\)
\(2.\sqrt{y-4}=\sqrt{4}\sqrt{y-4}\le\frac{y-4+4}{2}=\frac{y}{2}\)
\(M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{4}\sqrt{y-4}}{2y}\le\frac{\frac{x}{2}}{x}+\frac{\frac{y}{2}}{2y}=\frac{x}{2x}+\frac{y}{4y}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
vay max \(M=\frac{3}{4}\)khi \(\hept{\begin{cases}x=2\\y=8\end{cases}}\)
cho ba số thực không âm x,y,z thỏa mãn xyz=1 . tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M=\(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\)
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
bạn bui thai hoc sao lại cmt linh tinh vậy :)) bạn ko có học thức à :> mà ý bạn cmt như vậy là sao hả ?
Cho 3 số thực: x; y; z thỏa mãn: \(x\ge1;y\ge4;z\ge9\). Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{yz.\sqrt{x-1}+zx.\sqrt{y-4}+xy.\sqrt{z-9}}{xyz}\)
Tham khảo:
Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24
cho x,y thỏa mãn \(x\ge1,y\ge4\)Tìm giá trị lớn nhất của biểu thức :
\(Q=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
pt\(\Leftrightarrow\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)
Áp dụng BĐT cô si cho 2 số ko âm ta có:
\(\sqrt{x-1}=\sqrt{1\left(x-1\right)}\le\frac{x+1-1}{2}=\frac{x}{2}\)
\(\Rightarrow\frac{\sqrt{x-1}}{x}\le\frac{1}{2}\)(vì x dương)
\(\sqrt{y-4}=\frac{1}{2}\sqrt{4\left(y-4\right)}\le\frac{1}{2}.\frac{4+y-4}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{\sqrt{y-4}}{y}\le\frac{1}{4}\)(vì y dương)
\(\Rightarrow Q=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\le\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
Vậy \(Q\)max là \(\frac{3}{4}\)khi \(x=2,y=8\)
Với 3 số dương x, y, z thỏa mãn x+y+z=1. Tìm giá trị lớn nhất của biểu thức:
\(Q=\frac{x}{x+\sqrt{x+yz}}+\frac{y}{y+\sqrt{y+zx}}+\frac{z}{z+\sqrt{z+xy}}\)
Câu hỏi của phan tuấn anh - Toán lớp 9 - Học toán với OnlineMath cái này y hệt, tham khảo đi nếu vẫn chưa làm dc thì nhắn cho mk
Cho các số thực x,y,z thỏa mãn x>1, y>4,z>9. Tìm giá trị lớn nhất của biểu thức
\(P=\frac{yz\sqrt{x-1}+zx\sqrt{y-4}+xy\sqrt{z-9}}{xyz}\)
Áp dụng bất đẳng thức AM-GM:
\(yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)1}\le yz\frac{\left(x-1\right)+1}{2}=\frac{xyz}{2}\);
\(zx\sqrt{y-4}=\frac{zx}{2}\sqrt{\left(y-4\right)4}\le\frac{zx}{2}\frac{\left(y-4\right)+4}{2}=\frac{xyz}{4}\);
\(xy\sqrt{z-9}=\frac{xy}{3}\sqrt{\left(z-9\right)9}\le\frac{xy}{3}\frac{\left(z-9\right)+9}{2}=\frac{xyz}{6}\)
\(\Rightarrow\frac{yz\sqrt{x-1}+zx\sqrt{y-4}+xy\sqrt{z-9}}{xyz}\le\frac{\frac{xyz}{2}+\frac{xyz}{4}+\frac{xyz}{6}}{xyz}\)\(=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}\)
Vậy \(P_{max}=\frac{11}{12}\)
Dấu "=" xảy ra khi \(x=2;y=8;z=18\)
Giả sử x,y là những số thự không âm thỏa mãn x3+y3+xy=x2 +y2. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức
P=\(\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\)
Tìm giá trị lớn nhất của biểu thức: \(A=\frac{xy\sqrt{z-5}+xz\sqrt{y-4}+yz\sqrt{x-3}}{xyz}\)
\(A=\frac{\sqrt{z-5}}{z}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-3}}{x}=\frac{\sqrt{5\left(z-5\right)}}{\sqrt{5}z}+\frac{\sqrt{4\left(x-4\right)}}{2y}+\frac{\sqrt{3\left(x-3\right)}}{\sqrt{3}x}\)
Áp dụng BĐT Cosi ta có : \(A\le\frac{\frac{5+z-5}{2}}{\sqrt{5}z}+\frac{\frac{4+y-4}{2}}{2y}+\frac{\frac{3+x-3}{2}}{\sqrt{3}x}=\frac{\sqrt{5}}{10}+\frac{1}{4}+\frac{\sqrt{3}}{6}\)
Dấu "=" xảy ra \(\Leftrightarrow z=10;y=8;x=6\)
Tìm giá trị lớn nhất của biểu thức:
\(A=\frac{xy\sqrt{z-5}+xz\sqrt{y-4}+yz\sqrt{x-3}}{xyz}\).
\(A=\frac{\sqrt{z-5}}{z}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-3}}{x}\)
Áp dụng bất đẳng thức Côsi:
\(z=z-5+5\ge2\sqrt{5.\left(z-5\right)}\)
\(\Rightarrow\frac{\sqrt{z-5}}{z}\le\frac{1}{2\sqrt{5}}\)
Dấu bằng xảy ra khi \(z-5=5\Leftrightarrow z=10\)
tương tự x, y.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)