1/110+ 1/111+....+1/218
Tính
B = 1/110 + 1/111 +...+ 1/218
Cho A = 1/1×2 + 1/3×4 + 1/5×6 +...+ 1/217×218 và B = 1/110 + 1/111 + 1/112 +...+ 1/218
So sánh A và B
Cho A =\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{217.218}\) và B=\(\dfrac{1}{110}+\dfrac{1}{111}+\dfrac{1}{112}+...+\dfrac{1}{218}\)
So sánh A và B.
A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{217.218}\)
A = \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{217}-\dfrac{1}{218}\)
A = 1 - \(\dfrac{1}{218}\)
B = \(\dfrac{1}{110}\) + \(\dfrac{1}{111}\) + \(\dfrac{1}{112}\) + ... + \(\dfrac{1}{218}\)
Xét dãy số 110; 111; 112; ...; 218, dãy số này có số số hạng là:
(218 - 110) : 1 + 1 = 109 (số)
Mặt khác \(\dfrac{1}{110}\) > \(\dfrac{1}{111}>\dfrac{1}{112}>...>\dfrac{1}{218}\)
⇒ B = \(\dfrac{1}{110}\) + \(\dfrac{1}{111}\) + \(\dfrac{1}{112}+...+\dfrac{1}{218}\) < \(\dfrac{1}{110}\) + \(\dfrac{1}{110}\)+ ... +\(\dfrac{1}{110}\)
B < \(\dfrac{1}{110}\) x 109
B < 1 - \(\dfrac{1}{110}\)
\(\dfrac{1}{128}\) < \(\dfrac{1}{110}\) ⇒ A = 1 - \(\dfrac{1}{128}\) > 1 - \(\dfrac{1}{110}\) > B
A > B
Tính giá trị biểu thức sau: A=1*111+2*110+3*109+....+111*1/1+(1+2)+(1+2+3)+...+(1+2+3+....+111).
Mình cần gấp lắm các bạn giúp mình với nhé. Giải chi tiết từng bước nhá
\(A=\frac{1\times111+2\times110+3\times109+...+111\times1}{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+111\right)}\)
\(A=\frac{1\times111+2\times110+3\times109+...+111\times1}{\left(1+1+...+1\right)+\left(2+2+...+2\right)+...+111}\)(\(111\)số hạng \(1\), \(110\)số hạng \(2\),...)
\(A=\frac{1\times111+2\times110+3\times109+...+111\times1}{1\times111+2\times110+3\times109+...+111\times1}\)
\(A=1\)
a)46:41 b)110111:11012
Chứng minh rằng: C = 1 10 + 1 11 + 1 12 + ... + 1 99 + 1 100 > 1
C = 1 10 + 1 11 + 1 12 + ... + 1 99 + 1 100 > 1 ⇔ C = 1 10 + 1 11 + 1 12 + ... + 1 20 + 1 21 + 1 22 + ... + 1 30 + ... + 1 91 + 1 92 + ... + 1 100 C > 1 10 + 10 20 + 10 30 + ... + 10 100 > 10 20 + 10 30 + 10 60 = 1 2 + 1 3 + 1 6 = 1
Chứng minh rằng: C = 1 10 + 1 11 + 1 12 + ... + 1 99 + 1 100 > 1
C = 1 10 + 1 11 + ... + 1 100 > 1 10 + 1 100 = ... + 1 100 ⏟ 90 s o = 1 10 + 90 100 = 1
1-2+2+3-4+5-...-110+111-112+113
Chứng minh rằng:
a ) A = 1 11 + 1 12 + 1 13 + ... + 1 20 > 1 2 b ) B = 1 5 + 1 6 + 1 7 + ... + 1 16 + 1 17 < 2 c ) C = 1 10 + 1 11 + 1 12 + ... + 1 18 + 1 19 < 1
a) A > 1 20 + 1 20 + ... + 1 20 ⏟ 10 s o = 10 20 = 1 2 .
b) B = 1 5 + ... 1 9 + 1 10 + ... + 1 17 < 1 5 + ... + 1 5 ⏟ 5s o + 1 8 + ... + 1 8 ⏟ 8s o = 2
c) C = 1 10 + 1 11 + 1 12 ... + 1 18 + 1 19 < 1 10 + 1 10 + ... 1 10 ⏟ 9 s o = 1