Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Haibara Ai
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 21:32

Đề bài chắc sai bạn:

\(2x^2+y^2+1=2xy\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+x^2+1=0\)

\(\Leftrightarrow\left(x-y\right)^2+x^2+1=0\) (vô lý)

Hệ vô nghiệm

Lil Shroud
Xem chi tiết
Nguyễn Thị Ngọc Hân
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 7 2020 lúc 20:21

a/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-16xy+4y^2=4\\y^2-3xy=4\end{matrix}\right.\)

\(\Rightarrow4x^2-13xy+3y^2=0\)

\(\Leftrightarrow\left(x-3y\right)\left(4x-y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3y\\y=4x\end{matrix}\right.\)

Thay vào pt sau: \(\left[{}\begin{matrix}y^2-3y.y=4\left(vn\right)\\\left(4x\right)^2-3x.4x=4\end{matrix}\right.\)

\(\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=1;y=4\\x=-1;y=-4\end{matrix}\right.\)

b/

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-6xy+2y^2=6\\x^2+2xy-2y^2=6\end{matrix}\right.\)

\(\Rightarrow3x^2-8xy+4y^2=0\)

\(\Leftrightarrow\left(x-2y\right)\left(3x-2y\right)=0\Rightarrow\left[{}\begin{matrix}x=2y\\x=\frac{2}{3}y\end{matrix}\right.\)

Thay vào pt đầu: \(\left[{}\begin{matrix}2\left(2y\right)^2-3.2y.y+y^2=3\\2\left(\frac{2}{3}y\right)^2-3.\frac{2}{3}y.y+y^2=3\end{matrix}\right.\) bạn tự giải nốt

Ichigo Hollow
Xem chi tiết
Nguyễn Huy Thắng
20 tháng 3 2019 lúc 22:43

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

Nguyễn Huy Thắng
20 tháng 3 2019 lúc 22:48

caau a) binh phuong len ra no x=y tuong tu

Nguyễn Thành Trương
20 tháng 3 2019 lúc 14:03

c)

ĐK $y \geqslant 0$

Hệ đã cho tương đương với

$\left\{\begin{matrix} 2x^2+2xy+2x+6=0\\ (x+1)^2+3(y+1)+2xy=2\sqrt{y(x^2+2)} \end{matrix}\right.$

Trừ từng vế $2$ phương trình ta được

$x^2+2+2\sqrt{y(x^2+2)}-3y=0$

$\Leftrightarrow (\sqrt{x^2+2}-\sqrt{y})(\sqrt{x^2+2}+3\sqrt{y})=0$

$\Leftrightarrow x^2+2=y$

Luyri Vũ
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 7 2021 lúc 14:24

\(2x^2-\left(3y-3\right)x+y^2-2y+1=0\)

\(\Delta=\left(3y-3\right)^2-8\left(y^2-1y+1\right)=\left(y-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3y-3+y-1}{4}\\x=\dfrac{3y-3-y+1}{4}\end{matrix}\right.\)

\(\Rightarrow...\)

 

Kun ZERO
Xem chi tiết
ghdoes
Xem chi tiết
Phạm Minh Quang
12 tháng 12 2020 lúc 21:00

Ta có: \(\left\{{}\begin{matrix}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+xy\right)^2=2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+xy\right)^2=2x+9\\xy=3x+3-\dfrac{x^2}{2}\end{matrix}\right.\) \(\Rightarrow\left(\dfrac{x^2}{2}+3x+3\right)^2=2x+9\)( đến đây là phương trình 1 ẩn rồi, tự giải tiếp)

 

Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 11 2021 lúc 12:40

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Trx Bình
Xem chi tiết
Trx Bình
13 tháng 7 2019 lúc 10:05

Giải giúp mik câu c thôi cx đc!

Help me !!! gianroi