Tìm nghiệm nguyên của pt:
\(x^2+\sqrt{x+1}=y^2.\)
tìm nghiệm nguyên của pt
\(x^2+xy+y^2=x^2y^2\)
Ta có x2 + xy + y2 = x2 y2
<=> (x + y)2 = xy(xy + 1)
Mà x2 y2\(\le\)xy(xy + 1) \(\le\)(xy + 1)2
Không tồn tại số chính phương giữa 2 số chính phương liên tiếp nên để xy(xy + 1) là số chính phương thì nó phải là 1 trong hai số chính phương liên tiếp đó hay xy(xy + 1) = 0
Kết hợp với phương trình đầu thì nghiệm nguyên cần tìm là (x,y) = (0,0; 1,-1; -1,1)
tìm nghiệm nguyên dương của pt
\(x^2-y^2=6y+44\)
Ta có x2 - y2 = 6y + 44
<=> x2 - (y + 3)2 = 35
<=> (x - y - 3)(x + y + 3) = 5×7
<=> \(\hept{\begin{cases}x-y-3=7\\3+x+y=5\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=5\\3+x+y=7\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=1\\3+x+y=15\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=15\\3+x+y=1\end{cases}}\)
Vậy (x; y) = (8; 4)
tìm nghiệm nguyên của pt
\(x^2+xy+y^2=x^2y^2\)
sao ra x=y đc nhỉ
pt đã cho có dạng \(4x^2+8xy+4y^2+1=4x^2y^2+4xy+1\Leftrightarrow4\left(x+y\right)^2-\left(2xy-1\right)^2=-1\)
\(\Leftrightarrow\left(2x+2y+2xy-1\right)\left(2x+2y-2xy+1\right)=-1\)
Đến đây lập bảng nhé => được x y
\(x^2+xy+y^2=x^2y^2.\)
+ x =0; y =0 là nghiệm
+ x y khác 0
\(\frac{x}{y}+\frac{y}{x}=xy-1\in Z\)
=> x =y
=> 3x2 =x4 => x2 = 3 loại
Vậy x = y =0 là nghiệm duy nhất
1.Số nghiệm của pt x2 -2x-8=4 căn (4-x)(x+2)
2.Cho hình vuông ABCD Tính (vectơ AB,BD)
3. Tìm m để hệ pt y+x2=x(1) 2x+y-m=0 Có nghiệm.
1, Cho x2+y2+z2<=3 (x,y,z>0)
Tìm GTNN của P=1/(xy+1)+1/(yz+1)+1/(xz+1)
2, Giải pt nghiệm nguyên:
x(x+1)=y(y+1)(y2+2)
Bài 1 : (Mình chỉ tìm GTLN được thôi nha, bạn xem lại đề)
x2 + y2 + z2 < 3 ; mà x,y,z > 0 => \(\left(x;y;z\right)\in\left\{0;1\right\}\)
Ta thấy: (xy+1)-(x+y) = (1-x).(1-y)>=0
=> xy+1 > x+y
Tương tự:
yz+1 > y+z
xz+1 > z+x
Ta có:
(x+y+z).(1/(xy+1)+1/(yz+1)+1/(zx+1)) < x/(yz+1)+y/(zx+1)+z/(xy+1)
< x/(yz+1) + y/(zx+y) +z/(xy+z)
= x(1/(yz+1) -x/(xz+y) -y/(xy+z))
< x(1- z/(z+y) -y/(y+z))+5
= 5
Vậy GTLN là 5
Tìm nghiệm nguyên dương của phương trình: y^2 - x(x+1)(x+2)(x+3) = 1
Kushito Kamigaya tham khảo nhé:
x² + (x+y)² = (x+9)²
<=> (x+y)² = (x+9)² - x²
<=> (x+y)² = 9(2x+9) (*)
Vì: 9 = 3² nên từ (*) ta thấy (2x+9) phải là số chính phương
=> 2x+9 = n² => 2x = (n-3)(n+3) => x = (n-3)(n+3)/2
n-3 và n+3 cùng chẳn hoặc cùng lẽ, nên x nguyên dương khi n là số lẽ lớn hơn 3
đặt n = 2k+1 với k > 1, (k nguyên)
có: 2x + 9 = (2k+1)² = 4k²+4k+1
=> x = 2k²+2k-4, thay x vào (*)
(x+y)² = 9(2k+1)² => x+y = 3(2k+1) = 6k+3 => y = 6k+3-x
=> y = 6k + 3 - 2k² - 2k + 4 = -2k² + 4k + 7 > 0
=> k² - 2k < 7/2 => (k-1)² < 7/2+1 = 9/2
=> k-1 < 3/√2 => k - 1 ≤ 2 => k ≤ 3
với đk k > 1 ở trên ta chỉ chọn được k = 2 hoặc k = 3
*k = 2 => x = 8, y = 7
*k = 3 => x = 20, y = 1
x^2+y^2=x+y+xy
tìm nghiệm của pt
kb voi mk
Mọi người giúp mình làm bài này với. Tìm nghiệm nguyên của phương trình:
1) \(\sqrt{x}+\sqrt{y}=\sqrt{484}\) và 2) \(\sqrt{x}+\sqrt{y}=\sqrt{500}\)
Mình đang cần gấp mọi người giải luôn giúp mình nhé. Thanks