8. cho △ABC ( góc A = 90 độ ) , bd là tia phân giác của góc B ( D∈AC ) . trên tia BC lấy điểm E sao cho BA=BE
a, chứng minh DE⊥BE
b, chứng minh BD là đường trung trực của AE
c, kẻ AH⊥BC. so sánh EH và EC
cho ABC (A=90 độ) BD là tia phân giác của góc B (D thuộc AB). trên tia BC lấy điểm E sao cho BA=BE: a) chứng minh DE vuông góc với BE ;b) chứng minh BD là đường trung trực của AE ;c) kẻ AH vuông góc BC, so sánh EH và EC
Cho tam giác ABC ( góc A = 90 độ ); BD là tia phân giác của góc B ( D thuộc AC ). trên tia BC lấy điểm E sao cho BA = BE
a) Chứng minh: DE vuông BE
b) Chứng minh: BD là đường trung trực của AE
c) Kẻ AH vuông BC. So sánh EH và EC
a, cm tam giac BAD=tam giac BED( c.g.c)\(\Rightarrow\)Góc BAD= Góc BED( góc tuong ứng)\(\Rightarrow\)BED= 90o\(\Rightarrow\)DE vuong BE
- BA=BE(gt)
- chung AD
- góc ABD= góc EBD( BD lf tia P.g)
b,xét tam giác BAE có BA=BE(Gt)
\(\Rightarrow\)tam giac BAE Cân tại B
Mà BD là dường phân giác
\(\Rightarrow\)BD đồng thời là đường trung trực của AE
Mới làm dk 2fan nay
Kẻ EK vuông góc với DC
Do AH//DC ( vì cùng vuông góc với BC)
nên góc HAE bằng góc DEA( slt)
mà góc DAE bằng góc DEA( Do tam giác ADE có DA=DE nên Tam giác ADE cân tại D)
suy ra góc HAE bằng góc DAE
xét tam giác HAE và tam giác KAE:
.AE là cạnh huyền chung
.góc HAE bằng góc DAE
suy ra :tam giác HAE = tam giác KAE( ch-gn)
suy ra EH=EK (1)
Ta lại có tam giác EKC vuông tại K nên:
EK<EC( cạnh góc vuông bé hơn cạnh huyền) (2)
Từ (1) và (2) suy ra EH<EC
Cho ABC ( Â=90o) có BD là tia phân giác góc B ( D ∈ AC ). Trên tia BC lấy điểm E sao cho BA = BE
a) Chứng minh : DE ⊥ BE
b) Chứng minh: BD là đường trung trực của AE
c) Kẻ AH ⊥ BC . So sánh EH và EC
a) Xét ΔBAD và ΔBED có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔBAD=ΔBED(c-g-c)
Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)
hay DE⊥BE(Đpcm)
b) Ta có: ΔBAD=ΔBED(Cmt)
nên AD=ED(Hai cạnh tương ứng)
Ta có: BA=BE(gt)
nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DA=DE(cmt)
nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)
cho tam giác ABC (góc A >90 độ) , BD là phân giác của góc B (D thuộc AC). Trên tia BC lấy điểm E sao cho BA=BE
a, Chứng minh DE vuông góc vs BE
b, Chứng minh Bd là đường trung trực của AE
c, Kẻ AH vuông góc vs BC so sánh EH và EC
cần gấp câu c ạ
Cho tam giác ABC có góc A = 90 độ, BD là phân giác của góc B (D vuông góc với AC). Trên tia BC lấy điểm E sao cho BA = B. Chứng minh:
a) DE vuông góc BE
b) BD là đường trung trực của AE
c) Kẻ AH vuông góc BC. So sánh EH và EC
Cho ∆ABC (Â = 90 độ ) ; BD là phân giác của góc B (D∈AC). Trên tia BC lấy điểm E sao cho BA = BE.
a) Chứng minh DE ⊥ BE.
b) Chứng minh BD là đường trung trực của AE.
c) Kẻ AH ⊥ BC. So sánh EH và EC.
Vẽ giúp mình cái hình đi
Cho tam giác ABC ( A^ = 90 độ ) , BD là tia phân giác của góc B ( D thuộc AC ). Trên tia BC lấy điểm E sao cho BA= BE.
a) CM : DE vuông góc BE.
b) CM : BD là đường trung trực của AE.
c) Kẻ AH vuông góc BC . So sánh EH và EC.
Cho ABC vuông tại A; BD là tia phân giác của góc B (D AC). Trên tia BC lấy điểm E sao cho BA = BE.
a) Chứng minh: DE BE.
b) Chứng minh: BD là đường trung trực của AE.
c) Kẻ AH BC. So sánh EH và EC.
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>BE vuông góc DE
b: BA=BE
DA=DE
=>BD là trung trực của AE
choΔABC (90 độ); BD là phân giác của góc B (DϵAC). trên tia BC lấy điểm E sao cho BA=BE
a, chứng minh ΔBAD=ΔBED
b)chứng minh BD là đường trung trực của AE.
c)Kẻ AH vuông góc BC . so sánh EH và EC
b,xét tam giác BAE có BA=BE(Gt)
⇒
⇒tam giac BAE Cân tại B
Mà BD là dường phân giác
⇒
⇒BD đồng thời là đường trung trực của AE
C suy ra góc HAE bằng góc DAE
xét tam giác HAE và tam giác KAE:
.AE là cạnh huyền chung
.góc HAE bằng góc DAE
suy ra :tam giác HAE = tam giác KAE( ch-gn)
suy ra EH=EK (1)
Ta lại có tam giác EKC vuông tại K nên:
EK<EC( cạnh góc vuông bé hơn cạnh huyền) (2)
Từ (1) và (2) suy ra EH<EC
làm được mỗi 2 câu ko bt có đúng ko
Cho ABC (Â = 900) ; BD là phân giác của góc B (DAC). Trên tia BC lấy điểm E sao cho BA = BE. a) Chứng minh BAD = BED =>DE BE. b) Chứng minh BD là đường trung trực của AE. c) Kẻ AH BC. So sánh EH và EC.
a, Xét Δ BAD và Δ BED
Ta có : \(BA=BE\left(gt\right)\)
\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác \(\widehat{ABC}\))
BD là cạnh chung
=> Δ BAD = Δ BED (c.g.c)
b, Ta có : BA = BE (gt)
=> Δ ABE cân tại B
Mà BD là tia phân giác và cũng đồng thời là đường trung trực.
=> BD là đường trung trực của AE
c, ??