\(M=x^2y+xy^2-5x^2y^2+x^3\)
\(N=3x^2y^2-xy^2+x^2y^2\)
tinhd M + N và M - N
M=x^2y+xy^2-5x^2y^2+x^3-2x^2y+6xy^2
N=3x^3+xy+y^2-x^2y^2-2-2xy+7y^2
a)Thu gọn 2 đa thức trên rồi tìm bậc
b)tính M+N,M-N
a) Ta có: \(M=x^2y+xy^2-5x^2y^2+x^3-2x^2y+6xy^2\)
\(=\left(x^2y-2x^2y\right)+\left(xy^2+6xy^2\right)-5x^2y^2+x^3\)
\(=x^3-x^2y+7xy^2-5x^2y^2\)
Bậc là 4
Ta có: \(N=3x^3+xy+y^2-x^2y^2-2-2xy+7y^2\)
\(=3x^3+\left(xy-2xy\right)+\left(y^2+7y^2\right)-x^2y^2-2\)
\(=3x^2+8y^2-xy-x^2y^2-2\)
Bậc là 4
cho đa thức M=2x^2y-xy^2+3x-2y và N=2xy^2-2x^2y-5x+2y
a) tính A=M+N,B=N-M
b) tính giá trị của đa thức B khi x=2 và y^2=16
a ) A = M + N = ( 2x2y - xy2 + 3x - 2y ) + ( 2xy2 - 2x2y - 5x + 2y )
= 2x2y - xy2 + 3x - 2y + 2xy2 - 2x2y - 5x + 2y
= ( 2x2y - 2x2y ) + ( -xy2 + 2xy2 ) + ( 3x - 5x ) + ( - 2y + 2y )
= 0 + ( -1 +2 ) xy2 + ( 3 - 5 )x + 0
= xy2 - 2x
Vậy A = M + N = xy2 - 2x
B = N - M = 2xy2 - 2x2y - 5x + 2y - ( 2x2y - xy2 + 3x - 2y )
= 2xy2 - 2x2y - 5x + 2y - 2x2y + xy2 - 3x + 2y
= ( 2xy2 + xy2 ) + ( -2x2y - 2x2y ) + ( - 5x - 3x ) + ( 2y + 2y )
= ( 2 + 1 )xy2 + ( -2 - 2 )x2y + ( - 5 - 3 )x + ( 2 + 2 )y
= 3xy2 - 4x2y - 8x + 4y
Vậy B = 3xy2 - 4x2y - 8x + 4y
Cho \(M=x^2-3xy-2y^2;N=-5x^2+xy+y^2;P=-5x^2-4xy-2y^2\)
Tính M + N - P
\(M+N-P=\left(x^2-3xy-2y^2\right)+\left(-5x^2+xy+y^2\right)-\left(-5x^2-4xy-2y^2\right)\\ \Rightarrow x^2-3xy-2y^2-5x^2+xy+y^2+5x^2+4xy+2y^2\\ \Rightarrow x^2+2xy+y^2\)
cho 2 đa thức M =-xy^2+3x^2y -x^2y^2
N=1/2x2y-xy^2 + -2/3x^2y^2
a.Tính M+ N
b.Tìm Q biết N-Q=M
c ,Tính giá trị đa thức Q tại x=-1 y=1/2
a: Ta có: M+N
\(=-xy^2+3x^2y-x^2y^2+\dfrac{1}{2}x^2y-xy^2+\dfrac{-2}{3}x^2y^2\)
\(=-2xy^2+\dfrac{7}{2}x^2y-\dfrac{5}{3}x^2y^2\)
b: Ta có: N-Q=M
nên \(Q=N-M\)
\(=\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2+xy^2-3x^2y+x^2y^2\)
\(=\dfrac{-5}{2}x^2y+\dfrac{1}{3}x^2y^2\)
a) \(M+N=-xy^2+3x^2y-x^2y^2+\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2=\dfrac{7}{2}x^2y-2xy^2-\dfrac{5}{3}x^2y^2\)b) \(N-Q=M\Rightarrow Q=N-M=\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2+xy^2-3x^2y+x^2y^2=-\dfrac{5}{2}x^2y+\dfrac{1}{3}x^2y^2\)c) \(Q=-\dfrac{5}{2}x^2y+\dfrac{1}{3}x^2y^2=-\dfrac{5}{2}.\left(-1\right)^2.\dfrac{1}{2}+\dfrac{1}{3}.\left(-1\right)^2.\left(\dfrac{1}{2}\right)^2=-\dfrac{7}{6}\)
c: Thay x=-1 và \(y=\dfrac{1}{2}\) vào Q, ta được:
\(Q=-\dfrac{5}{2}\cdot1\cdot\dfrac{1}{2}+\dfrac{1}{3}\cdot1\cdot\dfrac{1}{4}\)
\(=-\dfrac{5}{4}+\dfrac{1}{12}\)
\(=-\dfrac{15}{12}+\dfrac{1}{12}=-\dfrac{14}{12}=-\dfrac{7}{6}\)
Tính tổng của các đa thức :
a) \(P=x^2y+xy^2-5x^2y^2+x^3\) và \(Q=3xy^2-x^2y+x^2y^2\)
b) \(M=x^3+xy+y^2-x^2y^2-2\)và \(N=x^2y^2+5-y^2\)
a)\(P+Q=\left(x^2y+xy^2-5x^2y^2+x^3\right)+\left(3xy^2-x^2y+x^2y^2\right)\)
=\(x^2y+xy^2-5x^2y^2+x^3+3xy^2-x^2y+x^2y^2\)
=\(x^2y-x^2y+xy^2+3xy^2-5x^2y^2+x^2y^2+x^3\)
=\(4xy^2-4x^2y^2+x^3\)
b)\(M+N=\left(x^3+xy+y^2-x^2y^2-2\right)+\left(x^2y^2+5-y^2\right)\)
=\(x^3+xy+y^2-x^2y^2-2+x^2y^2+5-y^2\)
=\(x^3+xy+y^2-y^2-x^2y^2+x^2y^2-2+5\)
=\(x^3+xy+3\)
Bài dài nên chắc sẽ có sai sót, nếu đúng bạn nha
Tính tổng của các đa thức :
a) \(P=x^2y+xy^2-5x^2y^2+x^3\) và \(Q=3xy^2-x^2y+x^2y^2\)
b) \(M=x^3+xy+y^2-x^2y^2-2\) và \(N=x^2y^2+5-y^2\)
a) Ta có: P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2
=> P + Q = x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2
= x3 – 5x2y2 + x2y2 + x2y – x2y + xy2 + 3xy2
= x3 – 4x2y2 + 4xy2
b) Ta có: M = x3 + xy + y2 – x2y2 – 2 và N = x2y2 + 5 – y2.
=> M + N = x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2
= x3 – x2y2 + x2y2 + y2 – y2 + xy - 2 + 5
= x3 + xy + 3.
a)
P + Q = x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2
= x3 – 5x2y2 + x2y2 + x2y – x2y + xy2 + 3xy2
= x3 – 4x2y2 + 4xy2
b)
M + N = x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2
= x3 – x2y2 + x2y2 + y2 – y2 + xy - 2 + 5
= x3 + xy + 3.
Tìm đa thức M , biết :
a) \(M-\left(\frac{1}{2}x^2y-5xy^2+x^3-y^3\right)=\frac{3}{4}xy^2-2x^2y+\)\(2y^3-\frac{1}{3}x^3\)
b)\(\left(-\frac{1}{3}x^3y^3+5x^2y^2-\frac{5}{2}xy\right)-M=xy-\frac{1}{6}x^3y^3-3x^2y^2\)
c)\(\left(\frac{2}{7}xy^4-5x^5+7x^2y^3-3\right)+M=0\)
Dạng : Phân tích đa thức thành nhân tử
a,2x^2y - 50xy
b,5x^2 -10x c.5x^3 -5x d.x^2 –xy + xe,x( x- y) -2(y- x) f,4x^2 -4xy -8y^2 g,x^2y- 6xy + 9y h,9x^2 - 4y^2 i,x^4 - 9x^2 k,25x^2 - 4y^2 m,2x^2 -18 n,x^2 - xy -4x +2y + 4 o,x^2 - y^2 - 2x -2y ô,x^ 2+ y^ 2 + 2xy - 9 ơ,x^ 2 -6x – 4y^2 +9 a1,x^ 2 +2x+1 – y^ 2 b1,3x^2 -6x +2xy -4y c1,5x^2 - 5xy- 9x+ 9y d1,3x^2 +5y - 3xy -5x e1,m^3 +4m^2 +3m f1,x^ 2 +x- y^ 2 +y g1,x^ 2 +3x +2 h1,x^ 2 -7x+10 k1,x^ 2 – 10x + 24 Giải nhanh giúp mình với, mình đang cần gấpa: 2x^2y-50xy=2xy(x-25)
b: 5x^2-10x=5x(x-2)
c: 5x^3-5x=5x(x^2-1)=5x(x-1)(x+1)
d: \(x^2-xy+x=x\left(x-y+1\right)\)
e: x(x-y)-2(y-x)
=x(x-y)+2(x-y)
=(x-y)(x+2)
f: 4x^2-4xy-8y^2
=4(x^2-xy-2y^2)
=4(x^2-2xy+xy-2y^2)
=4[x(x-2y)+y(x-2y)]
=4(x-2y)(x+y)
f1: x^2ỹ-y^2+y
=(x-y)(x+y)+(x+y)
=(x+y)(x-y+1)
Bài 1 : cho hai đa thức :
M = \(x^2y+xy^2-5x^2y^2+x^3\)
N = \(x^3+xy+3xy^2-x^2y+x^2y^2\)
a) Tính M + N
b) Tính M - N ; N - M
Bài 2 : cho các đa thức :
A = \(x^2-2x-y^2+3y-1\)
B = \(-2x^2+3y^2-5x+y+3\)
C = \(3x^2-2xy+7y^2-3x-5y-6\)
Tính :
a) A + B - C
b) A - B + C
c) -A + B + C
Bài 1
a)M+N=\(x^2y+xy^2-5x^2y^2+x^3+x^3+xy+3xy^2-x^2y+x^2y^2\)
=4xy2-4x2y2+2x3+xy
b)M-N=\(x^2y+xy^2-5x^2y^2+x^3-x^3-xy-3xy^2+x^2y-x^2y^2\)
=\(2x^2y-2xy^2-xy-6x^2y^2\)