tìm cặp số (x,y) thoả mãn
\(x+\sqrt{2-x^2}=4y^2+4y+3\)
Tìm x, y là số nguyên dương thoả mãn:
\(x^2+2x-4y^2+4y=3\)
Giải chi tiết hộ mk....
Tìm các cặp số thực (x;y) thoả mãn điều kiện
a)\(\sqrt{22x^2+36xy+6y^2}+\sqrt{22y^2+26xy+6x^2}=x^2+y^2+32\)
b)\(\sqrt{19x^2+2xy+4y^2+\sqrt{19y^2+2yx+4x^2}}+32=2\sqrt{xy}+16\left(\sqrt{x}+\sqrt{y}\right)\)
a/ Sửa đề:
\(\sqrt{22x^2+36xy+6y^2}+\sqrt{22y^2+36xy+6x^2}=x^2+y^2+32\)
\(\Leftrightarrow64x^2+64y^2+2048-64\sqrt{22x^2+36xy+6y^2}-64\sqrt{22y^2+36xy+6x^2}=0\)
\(\Leftrightarrow\left(22x^2+36xy+6y^2-64\sqrt{22x^2+36xy+6y^2}+1024\right)+\left(22y^2+36xy+6x^2-64\sqrt{22y^2+36xy+6x^2}+1024\right)+\left(36x^2-72xy+36y^2\right)=0\)
\(\Leftrightarrow\left(\sqrt{22x^2+36xy+y^2}-32\right)^2+\left(\sqrt{22y^2+36xy+6x^2}-32\right)^2+36\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{22x^2+36xy+6y^2}=32\\\sqrt{22y^2+36xy+6x^2}=32\\x=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{64x^2}=32\\x=y\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=4\\x=y=-4\end{cases}}\)
alibaba có thể giải thích giúp mk vì sao lại nhân với 64 được ko? Có phải b dự đoán được giá trị của x, y?
tìm cặp số thực (x;y) tm; x+\(\sqrt{2-x^2}=4y^2+4y+3\)
VT áp dụng BĐT bu-nhi-a- cop - xki
Vp đưa về Hđt
Tìm các số nguyên dương x, y thoả mãn:
a)\(x=\sqrt{2x\left(x-y\right)+2y-x+2}\)
b)\(x^3-y^3-1=3xy\)
c)\(x^3+1=4y^2\)
Tìm x,y thoả mãn phương trình sau X^2-6x+y^2-4y+18=5
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
tìm hết tất cả các bộ số nguyên dương (x;y) thoả mãn
x^2+2y^2-3xy+2x-4y+3=0
\(x^2+2y^2-3xy+2x-4y+3=0\)
\(\Leftrightarrow4x^2+8y^2-12xy+8x-16y+12=0\)
\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)-y^2+8x-16y+12=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+4\left(2x-3y\right)+4-\left(y^2-4y+4\right)+6=0\)
\(\Leftrightarrow\left(2x-3y+2\right)^2-\left(y-2\right)^2+6=0\)
\(\Leftrightarrow\left(2x-3y+2-y+2\right)\left(2x-3y+2+y-2\right)=-6\)
\(\Leftrightarrow\left(2x-4y+4\right)\left(2x-2y\right)=-6\)
\(\Leftrightarrow\left(x-2y+2\right)\left(x-y\right)=-\frac{3}{2}\)
Đến đây ta thấy vô lý
P/S:is that true ?
Tìm cặp số nguyên x y thỏa mãn X^2 - x (y+5)=-4y-9
x^2 - x(y+5)=-4y-9
=> x^2-xy-5x+4y+9=0
=>(x^2-xy)-4(x-y)-x+9=0
=>x(x-y)-4(x-y)-(x-4)+5=0
=>(x-4).(x-y-1)=-5
Vì x-4;x-y-1 thuộc Z =>x-4;x-y-1 thuộc ước của -5
=>....
tìm cặp số nguyên x y thỏa mãn x^2-x(y+5)=-4y-9
tìm tất cả cặp số (x;y) thõa mãn:
5x^2+4y^2-4xy=6x-4y-2