\(x+\sqrt{2-x^2}=4y^2+4y+3=\left(2y+1\right)^2+2\ge2>0\)
Do \(\sqrt{2-x^2}\ge0\Rightarrow x>0\)
AD BĐT Bunhiacopxki cho 2 số x và \(\sqrt{2-x^2}\) , ta có :
\(VT=x+\sqrt{2-x^2}\le\sqrt{\left(1+1\right)\left(x^2+2-x^2\right)}=2\)
Mà \(VP\ge2\) \(\Rightarrow VT=VP=2\)
Dấu " = " xảy ra \(\Leftrightarrow2y+1=0;x=\sqrt{2-x^2}\Leftrightarrow y=-\frac{1}{2};x=1\)