C=98^99+1/98^89+1 va D=98^98+1/98^88+1. So sanh C va D
C=98^99+1/98^89+1 va D=98^98+1/98^88+1. So sanh C va D
So sánh :
C= \(\dfrac{98^{99}+1}{98^{89}+1}\) và D = \(\dfrac{98^{98}+1}{98^{88}+1}\)
\(C-D=\dfrac{\left(98^{99}+1\right)\left(98^{88}+1\right)-\left(98^{89}+1\right)\left(98^{98}+1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)
\(=\dfrac{98^{187}+98^{99}+98^{88}+1-98^{197}-98^{89}-98^{98}-1}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)
\(=\dfrac{98^{99}-98^{98}+98^{88}-98^{89}}{\left(98^{89}+1\right)\left(98^{88}+1\right)}=\dfrac{98^{98}\left(98-1\right)-98^{88}\left(98-1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)
\(=\dfrac{97.98^{98}-97.98^{88}}{\left(98^{89}+1\right)\left(98^{88}+1\right)}=\dfrac{97.98^{88}\left(98^{10}-1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}>0\)
\(\Rightarrow C>D\)
So sánh : C = 9899+1/9889+1
D = 9898+1/9888+1
so sánh : C=98^99+1/98^89+1
D=98^98+1/98^88+1
\(C=\frac{98^{99}+1}{98^{89}+1}\)
\(D=\frac{98^{98}+1}{98^{88}+1}\)
\(C< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98^{98}\left(98+1\right)}{98^{88}\left(98+1\right)}\)
\(C< \frac{98^{98}}{98^{88}}=D\)
De bai: So sánh.C=98^99+1/98^89+1; D=98^98+1/98^88+1.
So sánh : C = \(\dfrac{98^{99}+1}{98^{89}+1}\) và D = \(\dfrac{98^{98}+1}{98^{88}+1}\)
So sánh:
a) A=\(\dfrac{98^{88}+1}{98^{98}+1}\)và B=\(\dfrac{98^{89}+1}{98^{99}+1}\) b) C=\(\dfrac{2022^{2023}+1}{2022^{2021}+1}\)và D=\(\dfrac{2022^{2021}+1}{2022^{2019}+1}\)
a: \(98^{10}\cdot A=\dfrac{98^{98}+98^{10}}{98^{98}+1}=1+\dfrac{98^{10}-1}{98^{98}+1}\)
\(98^{10}\cdot B=\dfrac{98^{99}+98^{10}}{98^{99}+1}=1+\dfrac{98^{10}-1}{98^{99}+1}\)
98^88+1>98^99+1
=>A<B
b: \(\dfrac{1}{2022^2}\cdot C=\dfrac{2022^{2023}+1}{2022^{2023}+2022^2}=1+\dfrac{1-2022^2}{2022^{2023}+2022^2}\)
\(\dfrac{1}{2022^2}\cdot D=\dfrac{2022^{2021}+1}{2022^{2021}+2022^2}=1+\dfrac{1-2022^2}{2022^{2021}+2022^2}\)
2022^2023>2022^2021
=>2022^2023+2022^2>2022^2021+2022^2
=>\(\dfrac{2022^2-1}{2022^{2023}+2022^2}< \dfrac{2022^2-1}{2022^{2021}+2022^2}\)
=>\(\dfrac{1-2022^2}{2022^{2023}+2022^2}>\dfrac{1-2022^2}{2022^{2021}+2022^2}\)
=>C>D
So sánh :C=98^99 +1/98^89 +1
vs
D=98^98 +1/98^88 +1
\(C=\frac{98^{99}+1}{98^{88}+1}\)\(D=\frac{98^{98}+1}{98^{98}+1}\)
Vì C>1 còn D=1 nên C>D
dung cho mih nha
so sánh \(C=\frac{^{98^{99}}+1}{98^{89}+1}\)và D=98^98+1/98^88+1
khẩn cấp nhé
Ta có:C=\(\frac{98^{99}+1}{98^{89}+1}\Rightarrow\frac{98^{99}+1}{98^{99}+10}=\frac{98^{99}+1}{98^{99}+1+9}=\frac{98^{99}+1}{1+9}\)
D\(\frac{98^{98}+1}{98^{88}+1}=\frac{98^{98}+1}{98^{98}+10}=\frac{98^{98}+1}{98^{98}+1+9}\frac{98^{98}+1}{1+9}\)
Vì\(\frac{98^{99}+1}{1+9}\)>\(\frac{98^{98}+1}{1+9}\)
=>C>D