Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 20:30

a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có

BE chung

góc ABE=góc KBE

=>ΔBAE=ΔBKE

=>EA=EK

b: Xét ΔCED có

CH vừa là đường cao, vừa là trungtuyến

=>ΔCED cân tại C

=>góc CDE=góc CED

pv d
24 tháng 4 2023 lúc 21:32

Bạn có đáp án cụ thể ko ạ

haha

Vũ Thảo Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 5 2021 lúc 13:45

a) Xét ΔBDH vuông tại H và ΔBEH vuông tại H có 

BH chung

DH=EH(H là trung điểm của DE)

Do đó: ΔBDH=ΔBEH(hai cạnh góc vuông)

Suy ra: \(\widehat{BDH}=\widehat{BEH}\)(hai góc tương ứng)

mà \(\widehat{BDH}=\widehat{ADC}\)(hai góc đối đỉnh)

và \(\widehat{CEB}=\widehat{BEH}\)

nên \(\widehat{CEB}=\widehat{ADC}\)(đpcm)

Ta có: ΔBDH=ΔBEH(cmt)

nên \(\widehat{DBH}=\widehat{EBH}\)(hai góc tương ứng)(1)

Xét ΔADC vuông tại A và ΔHDB vuông tại H có 

\(\widehat{ADC}=\widehat{HDB}\)(hai góc đối đỉnh)

Do đó: ΔADC\(\sim\)ΔHDB(g-g)

Suy ra: \(\widehat{ACD}=\widehat{HBD}\)(hai góc tương ứng)(2)

Từ (1) và (2) suy ra \(\widehat{EBH}=\widehat{ACD}\)(Đpcm)

Trịnh Nguyên
Xem chi tiết
Kinomoto Sakura
13 tháng 7 2021 lúc 9:33

undefined

a,△BED có H là trung điểm của DE và BH ┴ DE
=> △BED cân ở B
=> ∠BED = ∠BDE
∠BDE = ∠ADC (đối đỉnh)
=> ∠BED = ∠ADC
△BED cân ở B => BH là phân giác của ∠EBD
=> ∠EHB = ∠DBH
mà ∠DBH = 90⁰ - ∠BFA = 90⁰ - ∠HFC = ∠ACD
=> ∠EBH = ∠ACD
b, ∠EBH = ∠ACD = ∠DCB (vì CH là phân giác của ∠ACB)
= 90⁰ - ∠CBH
=> ∠EHB + ∠CBH = 90⁰
=> BE ┴ BC
c, △FBC có CH ┴ BF ; BA ┴ FC ; CH ⋂ BA = {D}
=> D là trực tâm của △FBC
=> FD ┴ BC
BE ┴ BC
=> FD//BE

Nguyễn Nho Thành
Xem chi tiết
Nguyễn Bích Vy
8 tháng 1 2022 lúc 21:03

undefined

Nguyễn Thế Mãnh
Xem chi tiết
Trương Công Phước
Xem chi tiết
Đặng Tấn Phát
28 tháng 10 2023 lúc 19:14

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác của góc HBA).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

Nguyễn Quỳnh Anh
Xem chi tiết
nguyễn chi
Xem chi tiết
sjfdksfdkjlsjlfkdjdkfsl
25 tháng 2 2020 lúc 13:20

a) Xét tgiac ABD và EBD có:

+ AB = BE

+ BD chung

+ góc ABD = EBD 

=> Tgiac ABD = EBD (c-g-c)

=> đpcm

b) Tgiac ABD = EBD (cmt) => AD = DE (hai cạnh t/ứng)

Xét tgiac ADE có AD = DE => Tgiac ADE cân tại D

=> đpcm

c) AH \(\perp\)BC, DE\(\perp\)BC => AH\(//\)DE

=> góc HAE = AED (2 góc SLT do AH\(//\)DE)

Mà tgiac ADE cân tại D (cmt) => góc AED = DAE

=> góc HAE = DAE

=> AE là tia pgiac góc HAC (đpcm)

d) Xét tgiac ADK và EDC có:

+ góc DAK = DEC = 90o

+ góc ADK = EDC (2 góc đối đỉnh)

+ AD = DE (do tgiac ABD = EBD)

=> Tgiac ADK = EDC (g-c-g)

=> AK = EC và KD = DC (2 cạnh t/ứng)

=> Tgiac KDC cân tại K => Góc DCK = (180o- góc KDC) /2

Tgiac AED cân tại D => góc EAD = (180o- góc ADE) /2

Mà góc ADE = KDC (2 góc đối đỉnh) => góc DCK = EAD

Mà 2 góc này SLT => AE \(//\)KC

=> đpcm

Khách vãng lai đã xóa
Hanna Giver
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 4 2023 lúc 9:27

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

Lâm Đặng
28 tháng 4 2023 lúc 15:09

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng