Cho tam giác ABC vuông tại A. Từ một điểm K bất kì thuộc cạnh BC vẽ KH vuông góc AC . Trên tia đối của tia HK lấy điểm I sao cho HI= HK .Chứng minh:
a) AB // HK c) Góc BAK = góc AIK
b) Tam giác AKI cân d) tg AIC = tg AKC
Cho tam giác ABC vuông tại A. Từ một điểm K bất kỳ trên cạnh BC, vẽ KH vuông góc với AC tại H. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh:
a) AB//HK
b) Góc KAH bằng góc IAH.
c) Tam giác AKI cân.
a: ta có: HK\(\perp\)AC
AB\(\perp\)AC
Do đó HK//AB
b: Xét ΔAHK vuông tại H và ΔAHI vuông tại H có
AH chung
HK=HI
Do đó; ΔAHK=ΔAHI
Suy ra: \(\widehat{KAH}=\widehat{IAH}\)
c: ta có: ΔAHK=ΔAHI
nên AK=AI
hay ΔAKI cân tại A
a)ta có: HK⊥AC
AB⊥AC
mà 2 góc này nằm ở vị trí so le trong
=> HK//AB
b: Xét ΔAHK vuông tại H và ΔAHI vuông tại H có
AH chung
HK=HI
=> ΔAHK=ΔAHI(g.h-c.g.v)
\(=>\widehat{HAK}=\widehat{HAI}\)
c)theo chứng minh câu B ta có
ΔAHK=ΔAHI
=> AK=AI (2 cạnh tg ứng)
=> ΔAKI cân tại A
Bài 6: Cho tam giác ABC vuông tại A. Từ một điểm K bất kì thuộc cạnh BC vẽ KH vuông góc AC. Trên tia đối của HK lấy điểm I sao cho HI = HK . Chứng minh:
a) ABI//HK
b) tam giác AKI cân
c) ^BAK =^ AIK
d) tam giác AIC = tam giác AKC
mn giúp e vs e đang cần gấp ah
a: Ta có: AB\(\perp\)AC
HK\(\perp\)AC
Do đó: HK//AB
b: Xét ΔAKI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAKI cân tại A
c: Ta có: ΔAKI cân tại A
mà AH là đường cao
nên AH là phân giác của góc IAK
=>\(\widehat{IAH}=\widehat{KAH}\)
Ta có: \(\widehat{BAK}+\widehat{HAK}=\widehat{BAH}=90^0\)
\(\widehat{AIK}+\widehat{IAH}=90^0\)(ΔAHI vuông tại H)
mà \(\widehat{HAK}=\widehat{IAH}\)
nên \(\widehat{BAK}=\widehat{AIK}\)
d: Xét ΔAIC và ΔAKC có
AI=AK
\(\widehat{IAC}=\widehat{KAC}\)
AC chung
Do đó: ΔAIC=ΔAKC
Cho tam giác ABC vuông tại A, từ một điểm K bất kỳ thuộc cạnh BC vẽ KH vuông góc với AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK.
Chứng minh:
a) AB // HK
b) Tam giác AKI cân
c) Góc BAK = góc AIK
d) Tam giác AIC = tam giác AKC
a/ Ta có
\(AB\perp AC\left(gt\right)\)
\(HK\perp AC\left(gt\right)\)
=> AB//HK (cùng vuông góc với AC)
b/ Xét tg AKI có
\(AH\perp HI\) => AH là đường cao của tg AKI
HK=HI (gt) => AH là trung tuyến của tg AKI
=> tg AKI cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
c/ Ta có
tg AKI cân tại A \(\Rightarrow\widehat{AIK}=\widehat{AKI}\) (góc ở đáy tg cân)
AB//HK (cmt) \(\Rightarrow\widehat{BAK}=\widehat{AKI}\) (góc so le trong)
\(\Rightarrow\widehat{BAK}=\widehat{AIK}\) (cùng bằng góc \(\widehat{AKI}\) )
d/ Xét tg CKI có
\(CH\perp KI\) => CH là đường cao của tg CKI
HK=HI => CH là trung tuyến của tg CKI
=> tg CKI cân tại C (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
Xét tg AIC và tg AKC có
tg AKI cân tại A (cmt) => AI=AK
tg CKI cân tại C (cmt) => CI=CK
AC chung
=> tg AIC = tg AKC (c.c.c)
Cho tam giác ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH vuông góc AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh :
a) AB // HK
b) Tam giác AKI cân
c) Góc BAK = góc AIK
d) Tam giác AIC = tam giác AKC
Cho ΔABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH ⊥ AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh:
a) AB // HK
b) ΔAKI cân
c) Góc ABK = góc AIK
d) ΔAIC = ΔAKC
b) Xét ΔAHK vuông tại H và ΔAHI vuông tại H có
HK=HI(gt)
AH chung
Do đó: ΔAHK=ΔAHI(hai cạnh góc vuông)
Suy ra: AK=AI(Hai cạnh tương ứng)
Xét ΔAKI có AK=AI(cmt)
nên ΔAKI cân tại A(Định nghĩa tam giác cân)
a) Ta có: AB\(\perp\)AC(ΔABC vuông tại A)
HK\(\perp\)AC(gt)
Do đó: AB//HK(Định lí 1 từ vuông góc tới song song)
Cho tam giác ABC vuông tại A, từ một điểm K bất kỳ thuộc cạnh BC vẽ KH vuông góc với AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK.
Chứng minh:
a) AB // HK
b) Tam giác AKI cân
c) Góc BAK = góc AIK
d) Tam giác AIC = tam giác AKC
a: AB⊥AC
HK⊥AC
Do đó: AB//HK
b: Xét ΔAKI có
AH là đường cao
AH là đườg trung tuyến
Do đó: ΔAKI cân tại A
c: \(\widehat{BAK}+\widehat{HAK}=90^0\)
\(\widehat{AIK}+\widehat{IAH}=90^0\)
mà \(\widehat{HAK}=\widehat{IAH}\)
nên \(\widehat{BAK}=\widehat{AIK}\)
cho tam giác ABC vuông tại A. Từ điểm K bất kì thuộc cạnh BC, vẽ KH vuông góc với AC. Trên tia đối của tia HK, lấy điểm I sao cho HI = HK. chứng minh:
a) AB//HK
b)tam giác AKI cân
d) góc BAK = góc AKI
mk vẽ ko có kí hiệu bn thông cảm
a) dễ thấy AB // HK ( vì cùng vuông góc với AC)
b) Vì \(AC\perp KI\)tại H và \(HK=HI\)nên AC là đường trung trực của KI
hay AH là đường trung trực của HI hay tam giác AKI cân tại A
c) Vì tam giác AKI cân tại A nên \(\widehat{AKI}=\widehat{AIK}\)
Mà \(\widehat{BAK}=\widehat{AKI}\)(2 góc so le trong)
=> \(\widehat{AIK}=\widehat{BAK}\)
Cho tam giác ABC vuông tại A. Từ một điểm K bất kì thuộc cạnh BC, vẽ KH vuông góc với AC. Trên tia đối của tia HK, lấy điểm I sao cho HI = HK, Chứng mình rằng:
a) AB // HK
b) Tam giác AKI cân
c) Góc BAK = góc AIK
d) Tam giác AIC = tam giác AKC
có hình ko
a) sử dụng tc: Từ vuông góc đến //
b)tam giác KHA= tam giác IHA(c.g.c)
=> AK=AI
=> góc AKI=góc AIK
vì AK=AI=> tam giác AKI cân
c) vì AB//HK=> góc BAK=góc AKI(so le trong)
}=> góc BAK=góc AIK
mà góc AKI=góc AIK(cmt)
d) vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI( t/c đường trung trực
tam giác AKC = tam giác AIC(c.c.c)
Hết
đúng nha
Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ K H ⊥ A C ( H A C ) . Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh:
a) Chứng minh AB //HK
b) Chứng minh K A H ^ = I A H ^
c) Chứng minh tam giác AKI cân
cho tam giác ABC vuông tại A. từ một điểm K bất kì thuộc cạnh BC vẽ KH vuông góc với AC.trên tia đối của tia HK lấy điểm I sao cho HI=HK.chứng minh:AB//HK