Dựng tam giác ABC nội tiếp đường tròn có R=2cm , góc A bằng 70 độ ,đường cao AH là 2,5 cm
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). AH, BK là các đường cao của tam giác ABC. Các tia AH, BK lần lượt cắt (O) tại các điểm thứ 2 là D và E.
a) CM: ABHK là tứ giác nội tiếp.
b) Cho góc ACb = 70 độ, R = 5cm. Tính S quạt OAB?
c) CM: HK // DE.
Mọi người giúp mình câu c với. :<
a; Xét tam giác ABC nội tiếp (O,R) có AH,BK là 2đường cao => góc AHB=góc BKA=90.
Vì K và H là 2 đỉnh liên tiếp của tứ giác ABHK
=> tứ giác ABHK nội tiếp
b,Xét đường tròn (O,R) có góc ACB là góc nội tiếp chắn cung AB
LẠi có góc AOB là góc ở tâm chắn cung AB
=>sđ góc AOB=2 sđ góc ACB=2x70=140 độ
=> S quạt OAB=\(\pi\).R^2.n/360=\(\pi\).25.140/360=\(\pi\).175/18 cm2
c,
c, xét tam giác ABC nội tiếp (O,R) có góc BED là góc nội tiếp chắn cung BD
Lại có tứ giác ABHK nội tiếp (cmt) nên góc BKH= góc BAH (cùng chắn cung BH)
Có góc BAD là góc nội tiếp chắn cung BD=> góc BAD=góc BED(cùng chắn cung BD)
=> góc BED=góc BKH mà 2 góc này ở vị trí đồng vị => HK song song DE
CHo tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R) và H là trực tâm của tam giác ABC. Đường cao AD cắt đường tròn tại điểm M khác A. Vẽ đường kính AN. a) CM: BH // CN
b) CM: DH = DM
c) Biết AH = R. Tính góc BAC
(Giải câu c thôi)
Cho tam giác ABC vuông tại A đường cao AH. Chia cạnh huyền BC thành 2 đoạn thẳng HB=1cm và HC=4cm. Dựng đường tròn (A;2cm) A. Tính Ah,AB,AC và các góc B, góc C của tam giác ABC B. Chứng minh BC là tiếp tuyến đường tròn (A;2cm) C. Dựng đường kính DH của đường tròn (A;2cm). Tiếp tuyến của đường tròn (A;2cm) tại D cắt tia đối của tia AB ở E. Chứng minh tứ giác BDRH là hình bình hành.
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=1\cdot4=4\)
=>\(AH=\sqrt{4}=2\left(cm\right)\)
BC=BH+CH
=>BC=1+4=5(cm)
XétΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB^2=1\cdot5=5\\AC^2=4\cdot5=20\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{\sqrt{5}}{5}\)
nên \(\widehat{C}\simeq27^0\)
ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{B}=90^0-27^0=63^0\)
b: AH=2cm
=>H thuộc (A;2cm)
Xét (A;2cm) có
AH là bán kính
BC\(\perp\)AH tại H
Do đó: BC là tiếp tuyến của (A;2cm)
c: Sửa đề: BDEH
Xét ΔAHB vuông tại H và ΔADE vuông tại D có
AH=AD
\(\widehat{HAB}=\widehat{DAE}\)
Do đó: ΔAHB=ΔADE
=>HB=DE
Xét tứ giác BDEH có
BH//ED
BH=ED
Do đó: BDEH là hình bình hành
cho tam giác ABC có 3 góc nhọn ,AB<AC ,nội tiếp đường tròn (O:R).Vẽ đường kính AD của đường tròn (O;R) ,đường cao AH của tam giác ABC(H thuộcBC) và BE vuông AD (E thuộc AD)
a)cm tứ giác AEHB nội tiếp đường tròn
b)cm AH.DC=AC.BH
c)gọi I là trung điểm BC ,cm IH=IE
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của \(\widehat{MDC}\)
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh \(AB^2+AC^2+CD^2+BD^2=8R^2\)
a: góc BHD+góc BMD=180 độ
=>BHDM nội tiếp
b: BHDM nội tiếp
=>góc HDM+góc HBM=180 độ
=>góc ADM=góc ABC
=>góc ADM=góc ADC
=>DA là phân giáccủa góc MDC
c: Xét tứ giác DHNC có
góc DHC=góc DNC=90 độ
=>DHNC nội tiếp
=>góc NHD=góc NDC
góc NHD+góc MHD
=180 độ-góc NCD+góc MBD
=180 độ+180 độ-góc ABD-góc ACD
=180 độ
=>M,H,N thẳng hàng
cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Hạ các đường cao AH, BK của tam giác. Các tia AH, BK lần lượt cắt (O) tại các điểm thứ hai là D,E
a, CM tứ giác ABHK nột tiếp đường tròn. Xác định tâm dduongf tròn đó
b, CM HK// DE
c, Cho (O) và dây AB cố định,điểm C di chuyển trên (O) sao cho tam giác ABC có ba góc nhọn.Chứng minh rằng độ dài bán kính đường tròn ngoại tiếp tam giác CHK không đổi
Giups mình với.thanks ❤
1.Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn(O;R),hai đường cao BE va CF của tam giaic cắt nhau tai H. Kẻ đường kính AK của đường tròn(O;R),gọi là trung điểm của BC.
a,Chứng minh AH=2.I
b, Biết góc BAC=60 độ ,tính độ dài dây BC theo R
2,Cho tam giác ABC(góc A=90 độ),BC=a. Gọi bán kính của đường tròn nội tiếp tam giác ABC là r. Chứng minh rằng : \(\frac{r}{a}\le\frac{\sqrt{2}-1}{2}\)
Cho tam giác ABC có góc A bằng 60 độ , AB=2cm, AC= 4cm.
a) Tím diện tích tam giác ABC
b) Tính BC
c) Gọi r là bán kính đường tròn nội tiếp tam giác ABC . Tính r
cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Hạ các đường cao AH, BK của tam giác. Các tia AH, BK lần lượt cắt (O) tại các điểm thứ hai là D,E
a, CM tứ giác ABHK nột tiếp đường tròn. Xác định tâm dduongf tròn đó
b, CM HK// DE
a/ cm tứ giác ABKH nội tiếp đường tròn và xđ tâm của đường tròn đó :
Trong tứ giác ABHK có : góc AKB = góc AHB = 90 độ
và cùng nhìn cạnh AB => tứ giác ABHK nội tiếp
=> Tâm của đường tròn này nằm trên trung điểm của cạnh AB
b/ cm HK // DE:
Có : góc BED = góc BAD ( cùng chắn cung BD)
mà góc BAD = góc BKH ( tú giác ABHK nội tiếp)
=> góc BKH = góc BED mà ở vị trí đồng vị => HK // DE