Tìm hai số tự nhiên biết tích của chúng bằng 432 và ước chung lớn nhất bằng 6
Bài 1:Tìm hai số tự nhiên.Biết rằng tổng của chúng bằng 66,ước chung lớn nhất của chúng bằng 6,đồng thời có một số chia hết cho 5.
Bài 2:Tìm hai số tự nhiên ,biết hiệu của chúng bằng 84 và ước chung lớn nhất của chúng bằng 12.
Bài 3:Tìm hai số tự nhiên,biết tích của chúng bằng 864 và ước chung lớn nhất của chúng bằng 6.
tìm hai số tự nhiên biết tích của chúng bằng 864 và ước chung lớn nhất bằng 6
Gọi 2 số cần tìm là a, b (a>b)
Vì ƯCLN(a,b)=6
=> \(a=6m\)
\(b=6n\)
( ƯCLN(m,n) =1 và m>n)
=> \(a\times b=6m\times6n=36mn\)
=> \(mn=864\div36\)
=> \(mn=24\)
Ta có
Cặp số: \(m=8\) => \(a=8\times6=48\)
\(n=3\) => \(b=3\times6=18\)
Vậy 2 số cần tìm là 48, 18
\(UCLN\left(a;b\right).BCNN\left(a;b\right)=ab\)
mà \(\left\{{}\begin{matrix}UCLN\left(a;b\right)=6\\a.b=864\end{matrix}\right.\)
\(\Rightarrow BCNN\left(a;b\right)=144\)
Vậy \(\left(a;b\right)\in\left\{\left(144;6\right)\right\}\)
2 số cần tìm là 48, 18 nha bạn
chúc bạn hok tốt
tìm hai số tự nhiên biết tích của chúng bằng 75 và ước chung lớn nhất bằng 5 Đọc thêm Toán lớp 6 Ước chung
tham khảo nha : Câu hỏi của thang Tran - Toán lớp 6 - Học toán với OnlineMath
Tìm hai số tự nhiên tổng bằng 432 và ước chung lớn nhất của chúng là 36
Gọi hai số cần tìm là a,b(a,b thuộc N)
Theo bài ra, ta có:
a+b=132
a chia hết cho 36. Suy ra a=36k
b chia hết cho 36. Suy ra b=36m mà ước chung lớn nhất của k và m là 1.
Thay a=36k, b=36m và a+b=432, ta được
36k+36m=432
36(k+m)=432
k+m=432:36
k+m=12
Suy ra cặp số (k;m) thỏa mãn(1;11);(5;7)
+) Với k=1,m=11; ta có:
a=36k. Suy ra a=36( thỏa mãn)
b=36m. Suy ra b=36.11 Suy ra b=396( thỏa mãn)
+) Với k=5;m=7, ta có:
a=36k Suy ra a=36.5 Suy ra a=180( thỏa mãn)
b=36m Suy ra b=36.7=252( thỏa mãn)
Vậy cặp số (a;b) tự nhiên thỏa mãn là (36;396);(180;252)
Gọi hai số cần tìm là a,b(a,b thuộc N)
Theo bài ra, ta có:
a+b=132
a chia hết cho 36. Suy ra a=36k
b chia hết cho 36. Suy ra b=36m mà ước chung lớn nhất của k và m là 1.
Thay a=36k, b=36m và a+b=432, ta được
36k+36m=432
36(k+m)=432
k+m=432:36
k+m=12
Suy ra cặp số (k;m) thỏa mãn(1;11);(5;7)
+) Với k=1,m=11; ta có:
a=36k. Suy ra a=36( thỏa mãn)
b=36m. Suy ra b=36.11 Suy ra b=396( thỏa mãn)
+) Với k=5;m=7, ta có:
a=36k Suy ra a=36.5 Suy ra a=180( thỏa mãn)
b=36m Suy ra b=36.7=252( thỏa mãn)
Vậy cặp số (a;b) tự nhiên thỏa mãn là (36;396);(180;252)
Gọi hai số tự nhiên cần tìm là a và b
Theo đề ra , ta có :
a + b = 432 và ƯCLN ( a , b ) = 36
Do : ƯCLN ( a , b ) = 36 nên a = 36 . k1 ; b = 36 . k2
Mà : ƯCLN ( k1 ,k2 ) = 1
Thay vào : a + b = 432 ta có : 36 . k1 + 36 . k2 = 432 = 36 ( k1 + k2 )
=> k1 + k2 = 432 : 36
=> k1 + k2 = 12
Ta có bảng sau :
k1 | 1 | 2 | 3 | 4 | 5 | 6 |
k2 | 11 | 10 | 9 | 8 | 7 | 6 |
Nhận | Loại | Loại | Loại | Loại | Loại |
+) Vì : k1 = 1 => a = 36 ; k2 = 11 => b = 396
Hoặc : k1 = 5 => a = 180 ; k2 = 7 => b = 252
Vậy a = 36 thì b = 396
a = 180 thì b = 252
Tìm 2 số tự nhiên biết tích của chúng bằng 864 và ước chung lớn nhất của chúng bằng 6
tìm hai số tự nhiên biết tích của chúng bằng 75 và ước chung lớn nhất bằng 5
tìm 2 số tự nhiên biết tích của chúng bằng 84 và ước chung lớn nhất bằng 6
mk biết kết quả nhưng ko biết trình bày thế nào
1: Tìm 2 số tự nhiên biết tổng của chúng là 144 và ước chung lớn nhất bằng 8 ?
2: Tìm 2 số tự nhiên biết tích của chúng là 1286 và ước chung lớn nhất bằng 9 ?
Tìm hai số tự nhiên biết tích của chúng bằng 3888 và ước chung lớn nhất của chúng bằng 18.
giúp mình với