Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vuong hien duc
Xem chi tiết
Nguyen Huy Ha
Xem chi tiết
Võ Lê Hoàng
22 tháng 3 2015 lúc 23:02

Đặt A=x^2-6xy+13y^2=100

Biến đổi A ta được  A=(x-3y)^2 + (2y)^2 =100

Do 100=6^2 + 8^2 suy ra hoặc x-3y =6 và 2y = 8 hoặc x-3y=8 và 2y=6

giải ra ta được (x;y)={(18;4);(17;3)}

Võ Lê Hoàng
22 tháng 3 2015 lúc 23:06

Đặt A=1-3x-2x^2 =-(2x^2+3X-1)

biến đổi A ta được A= -1/2 - 2(x+3/2)   =< -1/2

Dấu = xảy ra <=> x=-3/2

        Vậy biểu thức có giá trị lớn nhất là -1/2 <=> x=-3/2

ARMY MINH NGỌC
Xem chi tiết
Hoàng Thị Lan Hương
3 tháng 8 2017 lúc 9:09

Ta có  \(\frac{x+2}{13}+\frac{2x+45}{15}=\frac{3x+8}{37}+\frac{4x+69}{9}\)

\(\Leftrightarrow\left(\frac{x+2}{13}+1\right)+\left(\frac{2x+45}{15}-1\right)=\left(\frac{3x+8}{37}+1\right)+\left(\frac{4x+69}{9}-1\right)\)

\(\Leftrightarrow\frac{x+15}{13}+\frac{2\left(x+15\right)}{15}=\frac{3\left(x+15\right)}{37}+\frac{4\left(x+15\right)}{9}\)

\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{13}+\frac{2}{15}-\frac{3}{37}-\frac{4}{9}\right)=0\Leftrightarrow x+15=0\)vì \(\left(\frac{1}{13}+\frac{2}{15}-\frac{3}{37}-\frac{4}{9}\right)\ne0\)

\(\Leftrightarrow x=-15\)

Vậy \(x=-15\)

nguyễn thị thảo vy
17 tháng 1 2018 lúc 23:03

giải pt: (x-20)+(x-19)+......+100+101=101

Tứ diệp thảo mãi mãi yêu...
Xem chi tiết
Thanh Tùng DZ
3 tháng 12 2017 lúc 20:38

Ta có :

1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x \(⋮\)13 và y \(⋮\)7

đặt x  = 13k ; y = 7t ( k, t \(\in\)N* ) , từ 7x2 + 13y2 = 1820 ta có :

7 . 132 . k2 + 13 . 72 . t2 = 1820

nên : 13k2 + 7t2 = 20

suy ra : k2 = 1 ; t2 = 1 vì k,t \(\in\)N* nên k = t = 1 do đó x = 13 , y = 7 

Vậy ...

Trần Minh Tâm
3 tháng 12 2017 lúc 21:53

y = 7 đó

Vũ Quang Tùng
14 tháng 12 2017 lúc 20:20

Cho 3 số nguyên tố p, q, r sao cho p^q + q^p = r. Chứng minh rằng trong ba số p, q, r luôn có một số bằng 2.

hakhanhly
Xem chi tiết
Nguyễn Thu An
28 tháng 3 2022 lúc 20:49

`x^2-6xy+13y^2=100`

`<=> (x^2-6xy+9y^2)+4y^2=100`

`<=> (x-3y)^2+4y^2=100`

Mà `100=0^2+10^2=6^2+8^2`

`=>` Chia trường hợp giải `x;y`

Kết luận: Vậy `(x;y)=(15;5),(10;0),(-15;-5),(-10;0),(18;4),(17;3),(6;4),(-1;-3),(-6;-4),(1;3),(-18;-4),(-17;-3)`

Khách vãng lai đã xóa
rrrge
Xem chi tiết
Lê Tài Bảo Châu
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Trần Thanh Phương
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

cao nam anh
20 tháng 2 2021 lúc 17:33

LOADING...

Khách vãng lai đã xóa
Nguyễn Duy Long
Xem chi tiết
tep.
Xem chi tiết
Đào Thu Ngân
Xem chi tiết