Tính tổng : \(S1=\frac{15}{1.3}+\frac{15}{3.5}+\frac{15}{5.7}+......+\frac{15}{2017.2019}\)
Giúp mik với ạ !!!
Tính tổng sau một cách hợp lí :
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
Làm được t tick
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{1017.2019}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2018}{2019}\)
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+....+\frac{2}{2017\cdot2019}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2019}{2019}-\frac{1}{2019}\)
\(=\frac{2018}{2019}\)
Giải phương trình
\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{13.15}\right)\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{13.15}\right)\left(x-1\right)=\frac{6}{5}x-\frac{14}{15}\)
\(\Leftrightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\right)\left(x-1\right)=\frac{6}{5}x-\frac{14}{15}\)
\(\Leftrightarrow\left(1-\frac{1}{15}\right)\left(x-1\right)=\frac{6}{5}x-\frac{14}{15}\)
\(\Leftrightarrow\frac{14}{15}\left(x-1\right)=\frac{6}{5}x-\frac{14}{15}\)
\(\Leftrightarrow\frac{14}{15}x-\frac{14}{15}=\frac{6}{5}x-\frac{14}{15}\)
\(\Leftrightarrow-\frac{4}{15}x=\frac{28}{15}\)
\(\Leftrightarrow x=7\)
Giải phương trình: \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\right)\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
Giải phương trình: \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\right)\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
Tính tổng hợp lí:
a) \(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}+\frac{3}{418}+\frac{3}{550}\)
b) \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{\left(2n+1\right).\left(2n+3\right)}\)
C) \(\frac{7+\frac{7}{13}-\frac{7}{48}+\frac{7}{95}}{15+\frac{15}{13}-\frac{15}{48}+\frac{15}{95}}-\frac{7070707}{15151515}\)
BÀI HƠI KHÓ GIẢI ĐẦY ĐỦ+ CHI TIẾT VÀ DỄ HIỂU CHO MÌNH NHA
a) \(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}+\frac{3}{418}+\frac{3}{550}\)
= \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+\frac{3}{19.22}+\frac{3}{22.25}\)
= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+\frac{1}{19}-\frac{1}{22}+\frac{1}{22}-\frac{1}{25}\)
= \(\frac{1}{1}-\frac{1}{25}\)
= \(\frac{24}{25}\)
b) \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n+1\right).\left(2n+3\right)}\)
= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\)
= \(\frac{1}{1}-\frac{1}{2n+3}\)
= \(\frac{2n+2}{2n+3}\)
c) \(\frac{7+\frac{7}{13}-\frac{7}{48}+\frac{7}{95}}{15+\frac{15}{13}-\frac{15}{48}+\frac{15}{95}}-\frac{7070707}{15151515}\)
= \(\frac{7\left(1+\frac{1}{13}-\frac{1}{48}+\frac{1}{95}\right)}{15\left(1+\frac{1}{13}-\frac{1}{48}+\frac{1}{95}\right)}-\frac{7.1010101}{15.1010101}\)
= \(\frac{7}{15}-\frac{7}{15}\)
= 0
a) 24/25
b) (2n+2)/(2n+3)
c) 0
sai thì thôi nhé
Giải phương trình:
\((\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{13.15})(x-1)=\frac{3}{5}x-\frac{7}{15}\)
GIÚP MÌNH VỚI MAI MÌNH ĐI HỌC RỒI
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{15}\right)=\frac{7}{15}\)
Ta có: \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\right)\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{7}{15}\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\Leftrightarrow\frac{7}{15}x=\frac{3}{5}x\)
\(\Leftrightarrow\frac{2}{15}x=0\Leftrightarrow x=0\)
Tập nghiệm: \(S=\left\{0\right\}\)
Cho M=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
So sanh M vs 1/2
\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}.\frac{2018}{2019}\)
\(=\frac{2018}{4038}\)
\(\Rightarrow\frac{2018}{4038}< \frac{1}{2}\)( lấy máy tính )
\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{2017.2019}\)
\(\Rightarrow M=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-......-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2019}\)
\(\Rightarrow M=1-\frac{1}{2019}\)
\(\Rightarrow M=\frac{2019}{2019}-\frac{1}{2019}\)
\(\Rightarrow M=\frac{2018}{2019}\)
Có \(\frac{2018}{2019}=\frac{2018.2}{2019.2}=\frac{4036}{4038}\)
\(\frac{1}{2}=\frac{1.2019}{2.2019}=\frac{2019}{4038}\)
Mà \(\frac{4036}{4038}< \frac{2019}{4038}\Rightarrow M< \frac{1}{2}\)
Vậy M < \(\frac{1}{2}\)
Tính tổng: \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
giúp mik vs, ai nhanh tick luôn nè:)))
=49/99 NHA
HT
k cho mình nha
@@@@@@@@@@@@@@@@@@
\(P=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)
2A=\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)
2A=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\)
2A=\(1-\frac{1}{99}\)
A=\(\frac{49}{99}\)
Chúc bạn học tốt
HYC-30/1/2022
tính tổng :
a) \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
b) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
dấu / là phần nhé. bạn có thể xem bài có dấu phần ở : Câu hỏi của Nguyễn Thị Hoài Anh
A)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
=1-\(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
=1-\(\frac{1}{101}\)
=\(\frac{100}{101}\)
B) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{1}{99.101}\)
=5.(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))
=5.\(\frac{2}{2}.\)(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))
=5.\(\frac{1}{2}\).(\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\))
=5.\(\frac{1}{2}\).(1-\(\frac{1}{3}\)+\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
=5.\(\frac{1}{2}\).(1-\(\frac{1}{101}\))
=\(\frac{5}{2}.\frac{100}{101}=\frac{250}{100}\)
Chúc bạn học tốt