cho a/b=b/c=c/d và a+b+c khác 0 cmr (19a+5b+1890)^2019=1914^2019.a^2018.b
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)và \(a+b+c\ne0\).CMR: \(\left(19a+5b+1890\right)^{2019}=1914^{2019}.a^{2018}.b\)
Cho a/b=b/c=c/d và a+b+c khác 0
tính A =a.b^2.c^2016/a^2019; B=(19a+b+2100c)^2018/(a+219b)^2018
a) Cho các số dương a,b,c,d; c khác d và \(\frac{a}{b}\)=\(\frac{c}{d}\). Chứng minh rằng : \(\frac{\left(a^{2018}+b^{2018}\right)^{2019}}{\left(c^{2018}+d^{2018}\right)^{2019}}\)=\(\frac{\left(a^{2019}-b^{2019}\right)^{2018}}{\left(c^{2019}-d^{2019}\right)^{2018}}\)
b) Cho biết |3x + 2y| + |5z - 7x| + \(\left(xy+yz+xz-500\right)^{2022}\)= 0 . Tính giá trị : \(A=\left(3x-y-z\right)^{2021}\)
Các bạn giải giúp mik nhé. Mik cần gấp lắm. Ai giải trc mik sẽ tick cho
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR:\(\dfrac{\left(a^{2018}+b^{2018}\right)^{2019}}{\left(c^{2018}+d^{2018}\right)^{2019}}=\dfrac{\left(a^{2019}-b^{2019}\right)^{2020}}{\left(c^{2019}+d^{2019}\right)^{2020}}\)
HELP ME!!!!!!! Mình cần gấp mai mình lộp bài rùi
Cứu mình với 9:00 sáng nay mình nộp bài rùi
9cho a,b,c thuộc N thoả mãn a/2017+ b/2018+ c/2019 = a+b+c/((2017)^2018)2019
Cmr a^2020+ b^2020+ c^2020 =0
Cho a/b =c/dbieets a,b,c,d khác 0
CM: a) (a-b/c-d)2019=a2019+b2019/ c2019+d2019
b) 2a2-3ab+5b2/ 2b2+3ab= 2c2- 3cd+5d2/ 2d2+3cd
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Cho a/b=b/c=c/d(a;b;c khác 0)
Tính A=a^2018×b^2019/c^4037
có\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)CMR\(\frac{\left(19a+5b+1980c\right)^{2003}}{1914^{2003}.a^{2001}.b^2}\)
Cho a,b,c,d khác 0, thỏa mãn :
\(\frac{x^{2018}+y^{2018}+z^{2018}+t^{2018}}{a^2+b^2+c^2+d^2}\) =\(\frac{x^{2018}}{a^2}\)+\(\frac{y^{2018}}{b^2}\)
Tính A=x2019+y2019+z2019+t2019