Tính chu vi của tam giác cân ABC với AB=6cm, BC=2cm
Cho tam giác ABC cân tại A , AH vuông góc với BC ( H thuộc BC ) cho Bh = 2cm , AB = 4cm
a) Tính AH
b) Tính chu vi tam giác ABC
a) Áp dụng định lí Py-ta-go vào tam giác vuông ABH có :
AB2 = AH2 + BH2
hay 42 = AH2 + 22
AH2 = 42 - 22 = 12
\(\Rightarrow AH=\sqrt{12}\)
b) vì \(\Delta ABC\)cân tại A nên AB = AC = 4cm
Áp dụng định lí Py-ta-go vào tam giác vuông AHC có :
AC2 = AH2 + BH2
hay 42 = 12 + HC2
\(\Rightarrow\)HC2 = 16 - 12 = 4 = 22 \(\Rightarrow\)HC = 2
Mà BH + HC = BC = 2cm + 2cm = 4cm
Vậy chu vi tam giác ABC là : 4cm + 4cm + 4cm = 12cm
cho tam giác ABC cân tại A , biết AB=6cm,BC=10cm
tính chu vi tam giác ABC
áp dụng định lí py-ta-go để tìm ra cạnh AC rồi tình chu vi
Cạnh AC có thể là 10 cm hoặc 6 cm.
TH1: AC = 6 cm
Thỏa mãn bất đẳng thức tam giác.
Do đó chu vi tam giác ABC là : 6 + 6 + 10 = 22 ( cm)
TH2: AC = 10 cm
Thỏa mãn bất đẳng thức tam giác.
Do đó chu vi tam giác ABC là: 6+ 10+10=26 (cm)
cho tam giác ABC I là tâm đường tròn nội tiếp. kẻ IM,IN,IP lần lượt vuông góc với BC,CA,AB. Biết IM=IN=IP=2cm,BM=4cm,CM=6cm. Tính chu vi và diện tích tam giác ABC
Cho tam giác ABC có cạnh AB=6cm,cạnh=AC=5cm,AH=2cm, BC=8cm.Tính diện tích và chu vi hình tam giác đó.
cho tam giác ABC cân tại A,hạ AM vuông góc BC tại H.Biết BH=2cm,AB=4cm
a)Tính AH
b)Tính chu vi tam giác ABC
c)Tính độ dài đường cao CM của tam giác ABC
d)Hạ MN vuông góc BC tại N.Tính MN
Đề sai à? Nếu đúng thì có phải là:
cho tam giác ABC cân tại A,hạ CM vuông góc với AB tại M, AH vuông góc BC tại H.Biết BH=2cm,AB=4cm
a)Tính AH
b)Tính chu vi tam giác ABC
c)Tính độ dài đường cao CM của tam giác ABC
d)Hạ MN vuông góc BC tại N.Tính MN
đề đúng đấy ạ và mình làm được rồi
Nhưng nếu ghi hạ AM vuông góc BC tại H thì M nằm ở đâu?
Bài tập 11: Cho tam giác nhọn ABC có đường cao AH. Kẻ HI, HK lần lượt vuông góc với AB, AC (I thuộc AB, K thuộc AC). Biết AH = 6cm, BH = 2cm, BC = 8cm. a) Tính AB, AC b) Tính HI, HK c) Tính chu vi tứ giác AIHK.
a: Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=6^2+2^2=40\)
hay \(AB=2\sqrt{10}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=6^2+6^2=72\)
hay \(AC=6\sqrt{2}\left(cm\right)\)
Cho ∆ABC với AB= 6cm; AC= 9cm; BC= 12cm và ∆MNP với MN= 4cm; MP= 6cm; NP= 8cm.a)Chứng minh rằng tam giác ABC đồng dạng với tam giác MNP .b)Tính tỉ số chu vi của hai tam giác.
Tam giác đều ABC có cạnh AB=6cm. Chu vi của tam giác ABC là: A.12cm B.18cm C.2cm
cho tam giac abc vuông tại a, AB 3cm bc 5 cm so sánh góc b và c
Cho tam giác ABC có AB=6cm, AC=8cm, tia phân giác góc A cắt BC tại D. CMR: góc ADB<góc ADC.
Cho tam giác ABC cân tại A có chu vi = 20cm.Cạnh y của BC=6cm. So sánh các góc của ABC?
Bài 1:
AC=4cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
Bài 2:
BC=6cm
=>AB+AC=14cm
mà AB=AC
nên AB=AC=7cm
Xét ΔABC có AB=AC>BC
nên \(\widehat{B}=\widehat{C}>\widehat{A}\)