cho n thuộc N chứng minh rằng
A=17n+1111...1(n chữ số 1 ) chia hết cho 9
bạn nào giúp mình với !!
cho n thuộc N. chứng minh rằng : A=17n+11...1(n chữ số 1) chia hết cho 9
17n+11...1(n chữ số 1)=18n-n+111..1(n chữ số 1)=18n+(111...1 - n) chia hết cho 9
cho n thuộc N chứng minh rằng : A=17n+111...1(n chữ số 1) chia hết cho 9
A=9n.(111...1+8n)(n chữ số 1) chia hết cho 9
Cho n thuộc N, chứng minh rằng:
A= 17n+111...111 ( n chữ số 1 ) chia hết cho 9
1/Chứng minh rằng với e thuộc N , thì các số sau chia hết cho 9 :
a/10n-1
b/10n+8
2/Tìm điều kiện của n thuộc N để số 10n-1 chia hết cho 9 và 11
3/Cho A = 8n + 1111...111 (n thuộc N*)
1111.....111 có n chữ số 1
Chứng minh rằng A chia hết cho 9
\(1.a,10^n-1=100..0-1\)(n chữ số 0)=999..99(n chữ số 9)chia hết cho (vì có tổng bằng 9+9+..+9 chia hết cho 9)
\(b,10^n+8=100..0+8\)(n chữ số 0) = 1000...08.
Tổng các chữ số là: 1+0+0+...+8=9 chia hết cho 9.
2.
Tạm thời mik chỉ bik lm bài 1 nên pn thông cảm nhé
1 a) pn thao khảo tại nhé do ở đây có bài giống nên mik gửi link luôn nhé! http://olm.vn/hoi-dap/question/651590.html
b) Ta có: 10n+8= 1000000000000.......000+8
n chữ số 0
=> 10n+8= 10000000000........008
n chữ số 8
Ta có tổng các chữ số của 10n+8 bằng: 1+00000000.....000 ( Với n chữ số 0)+8= 1+0+8=9
Vì 9 chia hết cho 9 => 10n+8 chia hết cho 9
ta có : \(^{10^n}\) = 999...9 ( có n số 9 ) vì 9999...9 chia hết cho 9
suy ra 10^n - 1 chia hết cho 9
CHO n thuộc N. Chứng minh rằng A=17n + 111...1 chia hết cho 9
Lời giải:
\(A=17n+\underbrace{11....1}_{n}=18n+1\underbrace{00...0}_{n-1}+1\underbrace{00...0}_{n-2}+1\underbrace{00...0}_{n-3}+....+10+1-n\)
\(=18n+(1\underbrace{00...0}_{n-1}-1)+(1\underbrace{00...0}_{n-2}-1)+.....+(10-1)+(1-1)\)
\(=18n+\underbrace{99...9}_{n-1}+\underbrace{99...9}_{n-2}+....+9\vdots 9\) do các số hạng đều chia hết cho 9.
Cho n là số tự nhiên, chứng minh rằng:
A=17n+111...1(n chữ số 1) chia hết cho 9
17n+n-(111..1-n)=18n-(111..11-n)
vì 111..11 và n đều có số dư bằng nhau nên
111..11-n chia hết cho 9=> 17n+111..11 chia hết cho 9
cho n thuộc N , CMR: A=17 n+1111...1(n chữ số 1) chia hết cho 9
mk giải thế này có đúng ko: tổng các chữ số của 111...1 là n
17n=17+17+...+17(n số 17)=(1+7)+(1+7)+....+(1+7)(n số 1+7)=(1+7).n=n+7n
=> tổng các chữ số của A là:n+7n+n=9n chia hết cho 9
=> A chia hết cho 9
cho a= 8n+1111...111(n thuộc n* ; n chữ số 1). chứng minh a chia hết cho 9 ?
Cho n \(\in\)N chứng minh rằng
A = 17n+111..1( n chữ số 1 ) chia hết cho 9
Có:
A = 17n + 111...1
A = 17n + n - (111...1 - n)
A = 18n - n (111...1 - n)
Vì 111...1 và n đều có số dư bằng nhau nên 111...1 - n chia hết cho 9
\(\Rightarrow\) 17n + 111...1 chia hết cho 9.
Chúc bạn học tốt!
7n+n-(111..1-n)=18n-(111..11-n)
vì 111..11 và n đều có số dư bằng nhau nên
111..11-n chia hết cho 9=> 17n+111..11 chia hết cho 9