\(Cm:\frac{a}{bcd+1}+\frac{b}{acd+1}+\frac{c}{abd+1}+\frac{d}{abc+1}\le3\)
Giúp tớ với pleaseeeeeee:
Cho \(0\le a,b,c,d\le1\)
CMR: \(\frac{a}{bcd+1}+\frac{b}{acd+1}+\frac{c}{abd+1}+\frac{d}{abc+1}\le3\)
Thanks mn
Vì \(0\le a,b,c,d\le1\Rightarrow abc+1\ge abcd+1\)
\(\Rightarrow VT\le\frac{a+b+c+c}{abcd+1}\)
Do \(\hept{\begin{cases}\left(1-a\right)\left(1-b\right)\ge0\\\left(1-c\right)\left(1-d\right)\ge0\\\left(1-ab\right)\left(1-cd\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b\le1+ab\\c+d\le1+cd\\ab+cd\le1+abcd\end{cases}}\)
\(\Rightarrow a+b+c+d\le2+ab+cd\le2+1+abcd=3+abcd\)
Vậy \(VT\le\frac{3+abcd}{1+abcd}\le\frac{3\left(1+abcd\right)}{1+abcd}=3\)
Dấu "=" xảy ra khi a=0,b=c=d=1
Cho abcd = 1. Tính
\(S=\frac{a}{abc+ab+a+1}+\frac{b}{bcd+bc+b+1}+\frac{c}{acd+cd+c+1}+\frac{d}{abd+ad+d+1}\)
cho abcd = 1. Tính
\(S=\frac{a}{abc+ab+a+1}+\frac{b}{bcd+bc+b+1}+\frac{c}{acd+cd+c+1}+\frac{d}{abd+ad+d+1}\)
Cho abcd=1. Tính \(S=\frac{a}{abc+ab+a+1}+\frac{b}{bcd+bc+b+1}+\frac{c}{acd+cd+c+1}+\frac{d}{abd+ad+d+1}\)
bài này mk gặp 1 lần r nhưng mk chỉ nhớ kết quả =1 thôi, xl bn nha!
Cho abcd = 0.
Chứng minh \(A=\frac{a}{abc+ab+a+1}+\frac{b}{bcd+bc+b+1}+\frac{c}{acd+cd+c+1}+\frac{d}{abd+ad+d+1}\)
cho \(0\le a,b,c,d\le1\) Tìm GTLN của: \(P=\frac{a}{bcd+1}+\frac{b}{acd+1}+\frac{c}{abd+1}+\frac{d}{abc+1}\)
Cho a,b,c thỏa mãn abcd=1. Tính giá trị biểu thức
\(M=\frac{1}{abc+ab+a+1}+\frac{1}{bcd+bc+b+1}+\frac{1}{acd+cd+c+1}+\frac{1}{abd+cd+d+1}\)
abcd=1 Tính
\(\frac{a}{abc+ab+a+1}=\frac{b}{bcd+bc+b+1}=\frac{c}{acd+cd+c+1}=\frac{d}{abd+ad+d+1}\)
các bn giúp mk nhé
1 h 30 là ik hok oy
Thanks các bn nhìu
kia ko pải là = đâu mà pải là cộng chứ bn NTMH
Cho abcd = 1 Tính:
\(\frac{a}{abc+ba+a+1}+\frac{b}{bcd+bc+b+1}+\frac{c}{acd+cd+c+1}+\frac{d}{abd+ad+d+1}\)
Giúp mk làm bài này vs.....
Thanks các bn nhìu nhá...
^^ ^^ ^^ ^^
Ta có : \(\frac{a}{abc+ab+a+1}+\frac{b}{bcd+bc+b+1}+\frac{c}{acd+cd+c+1}+\frac{d}{abd+ad+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{abd}{abcd^2+abcd+abd+ad}+\frac{abcd}{a^2bcd^2+abcd^2+abcd+abd}+\frac{d}{abd+ad+d+1}\)
\(=\frac{ad}{abd+ad+d+1}+\frac{abd}{abd+ad+d+1}+\frac{1}{abd+ad+d+1}+\frac{d}{abd+ad+d+1}\)
\(=\frac{abd+ad+d+1}{abd+ad+d+1}=1\)