Chứng minh rằng nếu \(a,b\in N\) và \(a+5b⋮7\) thì \(10a+b⋮7\)
Chứng minh rằng: Nếu a,b thuộc N và a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7
Xét hiệu 5(10a+b) - (a+5b) = (50a+5b) - (a+5b)
=49a chia hết cho 7
suy ra:5(10a+b) - (a+5b) chia hết cho 7
mà a+5b chia hết cho 7 nên 10a+b chia hết cho 7
chứng minh rằng nếu a,b thuộc N và a+5b chia hết cho 7 thì 10a+b cungx chia hết cho 7
Ta có:
a+5b chia hết cho 7
=>10.(a+5b)chia hết cho 7
=>10a+50b chia hết cho 7
=>(10a+b)+49b chia hết cho 7(1)
Mà 49 chia hết cho 7 nên 49b chia hết cho 7(2)
Từ (1)và(2), ta có: 10a+b chia hết cho 7
Vậy nếu a,b\(\in\)N và a+5b chia hết cho 7 thì 10a+b cũng chia hết cho 7.
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Chứng minh rằng nếu a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7. Điều ngược lại có đúng không?
Xét phép trừ:
10(a + 5b) - (10a + b)
= 10a + 50b - 10a - b
= 49b chia hết cho 7 (1)
+ Nếu a + 5b chia hết cho 7 => 10(a + 5b) chia hết cho 7 (2)
Từ (1) và (2) => 10a + b chia hết cho 7
+ Nếu 10a + b chia hết cho 7 (3)
Từ (1) và (3) => 10(a + 5b) chia hết cho 7 => a + 5b chia hết cho 7 (Vì (7; 10) = 1)
Vậy a + 5b chia hết cho 7 khi và chỉ khi 10a + b chia hết cho 7
Cho a + 5b ⋮ 7 (a, b ∈ N). Chứng minh rằng: 10a + b ⋮ 7.
\(a+5b⋮7\Rightarrow10\left(a+5b\right)=10a+50b⋮7\)
\(10a+50b=\left(10a+b\right)+49b⋮7\)
\(49b⋮7\Rightarrow10a+b⋮7\left(dpcm\right)\)
Chứng tỏ rằng nếu a + 5b chia hết cho 7 thì 10+b cũng chia hết cho 7, nếu 10a +b chia hết cho 7 thì
a+5b cũng chia hết cho 7
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Cho a +5b chia hết 7 ( a,b€N). Chứng minh rằng 10a+b chia hết 7
a+5b chia hết cho 7
=> 10a+50b chia hết cho 7
=> 10a+b+49b chia hết cho 7
Mà 49b chia hết cho 7
=> 10a+b chia hết cho 7
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Cho (a+5b) chia hết cho 7, (a,b) thuộc N*. Chứng minh rằng (10a+b)chia hết cho 7.
Giả sử (10a + b)⋮7 (1)
Vì (a + 5b)⋮7 nên 4(a + 5b)⋮7
=> (4a + 20b)⋮7 (2)
Từ (1) và (2) => (10a + b) + (4a + 20b)⋮7
=> (10a + b + 4a + 20b)⋮7
=> (10a + 4a) + (b + 20b)⋮7
=> (14a + 21b)⋮7
=> 7(2a + 3b)⋮7 (đúng)
=> Điều giả sử là đúng
Vậy (10a + b)⋮7 (đpcm)
Theo đầu bài (a+5b) \(⋮\)7 (a, b \(\in\) N*)
=> a \(⋮\)7, 5b \(⋮\)7
Mà 5 \(⋮̸\) 7 nên b \(⋮\)7
Do a \(⋮\)7 nên 10a \(⋮\)7
=> 10a + b \(⋮\)7
Vậy 10a + b \(⋮\)7
Cho a+5b chia hết cho 7 (a,b thuộc N). Chứng minh rằng 10a+b chia hết cho 7
trong sách nâng cao và phát triển ý, cứ tìm sẽ ra
Cho a+5b chia hết cho 7(a,b thuộc N).Chứng minh rằng 10a+b chia hết cho 7
ta có:
a+5b chia hết cho 7
=>10.(a+5b)=10a+50b chia hết cho 7
lại có: 49b chia hết cho 7
=>10a+50b-49b chia hết cho 7
=>10a+b chia hết cho 7 (đpcm)