Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
_Để Ta Yên Nào_
Xem chi tiết
ʚ_0045_ɞ
26 tháng 3 2018 lúc 17:54

a. Ta có: 2(x+1)=3+2x2(x+1)=3+2x

⇔2x+2=3+2x⇔0x=1⇔2x+2=3+2x⇔0x=1

Vậy phương trình vô nghiệm.

b. Ta có: 2(1−1,5x)+3x=02(1−1,5x)+3x=0

⇔2−3x+3x=0⇔2+0x=0⇔2−3x+3x=0⇔2+0x=0

Vậy phương trình vô nghiệm.

c. Vì |x|≥0|x|≥0 nên phương trình |x|=−1|x|=−1 vô nghiệm.

Phan Thành Tiến
26 tháng 3 2018 lúc 19:56

cứ đưa vào máy vinacal... ra nghiệm ảo thì là vô nghiệm.. hé hé hé :))))

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 11 2017 lúc 13:45

- Xét hàm số   f ( x )   = x 3 + x - 1 , ta có f(0) = -1 và f(1) = 1 nên: f(0).f(1) < 0.

- Mặt khác:    f ( x )   = x 3 + x - 1  là hàm đa thức nên liên tục trên [0;1].

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 1)

- Suy ra    f ( x )   = x 3 + x - 1 đồng biến trên R nên phương trình    x 3 + x - 1 = 0 có nghiệm duy nhất  x 0   ∈   ( 0 ; 1 ) .

- Theo bất đẳng thức Côsi:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 1)

Xeton
Xem chi tiết
FLT24
3 tháng 4 2022 lúc 16:31

Em 2k8 nên e k chắc :((

Đặt f(x) = x^3 - 3x^2 - 1 = 0 => f(x) liên tục trên (3;4)

x = 3 => f(3) = -1 ; x = 4 => f(4) = 15

=> f(3) . f(4) = -15 < 0 => tồn tại no x thuộc (3;4) để f(x) = 0 ( đpcm ) 

 

Nguyễn Thị Thiên Minh
Xem chi tiết
Đoàn Hữu Luân
10 tháng 4 2020 lúc 21:23

GHÉP THÀNH 2 ĐA THỨC BẬC HAI 

(X^4 + 2*X^3/2+x^2/4)+(X^2/4+2*X/2+1)+X^2/2

(X^2+x/2)^2+(X/2+1)^2+X^2/2

ĐÚNG THÌ K 

Khách vãng lai đã xóa
Tạ Đức Hoàng Anh
10 tháng 4 2020 lúc 21:32

- Ta có: \(x^4+x^3+x^2+x+1=0\)( * )

- Nhân \(x-1\)vào cả hai vế của phương trình ( * ), ta có: 

             \(\left(x^4+x^3+x^2+x+1\right).\left(x-1\right)=0.\left(x-1\right)\)

        \(\Leftrightarrow x^5+x^4+x^3+x^2+x-x^4-x^3-x^2-x-1=0.\left(x-1\right)\)

        \(\Leftrightarrow x^5+\left(x^4-x^4\right)+\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(x-x\right)-1=0.\left(x-1\right)\)

        \(\Leftrightarrow\frac{x^5-1}{x-1}=0\)( ** )

        \(\Leftrightarrow x^5-1=0\)

        \(\Leftrightarrow x^5=1\)

        \(\Leftrightarrow x=1\)

- Thay \(x=1\)vào phương trình ( ** ), ta có: 

               \(\frac{1^5-1}{1-1}=\frac{1-1}{0}\)( vô nghiệm )

Vậy phương trình \(x^4+x^3+x^2+x+1=0\)vô nghiệm ( ĐPCM )

Khách vãng lai đã xóa
Nguyễn Thị Thiên Minh
11 tháng 4 2020 lúc 9:51

cảm ơn hai bạn nhiều

Khách vãng lai đã xóa
Trần Ngọc Hoa
Xem chi tiết
Trần Thị Thanh Thảo
Xem chi tiết
lol Qn
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 3 2020 lúc 18:26

1.

a/ \(\Leftrightarrow\left(x+1\right)\left(x^2+3x+2\right)+\left(x-1\right)\left(x^2-3x+2\right)-12=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2\right)+3x\left(x+1\right)-3x\left(x-1\right)+\left(x-1\right)\left(x^2+2\right)-12=0\)

\(\Leftrightarrow2x\left(x^2+2\right)+6x^2-12=0\)

\(\Leftrightarrow x^3+3x^2+2x-6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+6\right)=0\Rightarrow x=1\)

b/ Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2+\frac{1}{x^2}+3\left(x+\frac{1}{x}\right)+4=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(t^2-2+3t+4=0\Rightarrow t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=-1\\x+\frac{1}{x}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+1=0\left(vn\right)\\x^2+2x+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 3 2020 lúc 18:30

1c/

\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)

\(\Leftrightarrow x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^4-2x^3+5x^2-2x+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^4-2x^3+x^2+x^2-2x+1+3x^2=0\)

\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+3x^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x-1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn

Vậy pt có nghiệm duy nhất \(x=-1\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 3 2020 lúc 18:35

2.

a. \(x^4-x^3+x^2+x^2-x+1=0\)

\(\Leftrightarrow x^2\left(x^2-x+1\right)+x^2-x+1=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\left(vn\right)\\x^2-x+1=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

b.

\(x^4+x^3+x^2+x+1=0\)

\(\Leftrightarrow x\left(x^3+1\right)+x^3+1+x^2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)+x^2=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2-x+1\right)+x^2=0\)

\(\left\{{}\begin{matrix}\left(x+1\right)^2\left(x^2-x+1\right)\ge0\\x^2\ge0\end{matrix}\right.\)

Nên dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x+1=0\\x=0\end{matrix}\right.\) ko tồn tại x thỏa mãn

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 12 2018 lúc 5:10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 1 2019 lúc 6:22