1, CMR \(a^2+b^2+3>ab+a+b\)
2, Tìm GTNN của biểu thức \(P=x^2+2y^2+2xy-6x-8y+2029\)
a, Cho a,b,c thoả mãn: a + b + c = \(\frac{3}{2}\)
Chứng minh rằng a2 + b2 + c2 >_ \(\frac{3}{4}\)
b, Tìm giá trị nhỏ nhất của biểu thức
P = x2 + 2y2 + 2xy - 6x - 8y + 2029
Có: \(\left(a-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2-a+\frac{1}{4}\ge0\Leftrightarrow a^2+\frac{1}{4}\ge a\)
Tương tự cũng có : \(b^2+\frac{1}{4}\ge b ; c^2+\frac{1}{4}\ge c\)
Cộng vế với vế các bất đẳng thức cùng chiều ta đươc:
\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)( Vì a + b + c = \(\frac{3}{2}\) nên \(a^2+b^2+c^2\ge\frac{3}{4}\))
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{2}\)
Tìm GTNN của biểu thức P=\(x^2+2y^2+2xy-6x-8y+2018\)
Giải:
\(P=x^2+2y^2+2xy-6x-8y+2018\)
\(\Leftrightarrow P=\left(x^2+y^2+9+2xy-6x-6x\right)+\left(y^2-2y+1\right)+2008\)
\(\Leftrightarrow P=\left(x+y-3\right)^2+\left(y-1\right)^2+2008\)
Vì \(\left\{{}\begin{matrix}\left(x+y-3\right)^2\ge0;\forall x,y\\\left(y-1\right)^2\ge0;\forall y\end{matrix}\right.\)
\(\Leftrightarrow\left(x+y-3\right)^2+\left(y-1\right)^2+2008\ge2008;\forall x,y\)
Hay \(P\ge2008;\forall x,y\)
Vậy ...
\(P=x^2+2y^2+2xy-6x-8y+2018\)
<=> \(P=\left(x^2+2xy+y^2\right)-\left(6x+6y\right)+9+\left(y^2-2y+1\right)+2008\)
<=> P=(x+y)2-6(x+y) +9 +(y-1)2 +2008
<=> P=(x+y-3)2+(y-1)2+2008
=> Min P= 2008 dấu = xảy ra khi y=1;x=2
CMR giá trị của biểu thức sau là 1 hằng số :
A = 2x (3x-1) - 6x (x+1) - ( 3-8x)
B = 0,2 (5x - 1 ) - 1/2 ( 2/3x +4 ) + 2/3 (3-x)
C = (x-2y ) ( x2 + 2xy +4y2 ) + 8y3 - x3
A=6x2-2x-6x2-6x-3+8x=-3 Vậy giá trị A là một hằng số B=x-0,2-1/3-2+2-2/3=-0,2 Vậy ... C=x3-8y3+8y3-x3 =0 Vậy....
Tìm GTNN của biểu thức:
\(A=x^2+2y^2+2xy-2x-8y+2017\)
Ta có
\(A=x^2+2y^2+2xy-2x-8y+2017\)
\(=\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1+\left(y^2-6y+9\right)+2007\)
\(=\left(x+y\right)^2-2\left(x+y\right)+1+\left(y-3\right)^2+2007\)
\(=\left(x+y-1\right)^2+\left(y-3\right)^2+2007\ge2007\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Tìm GTNN của:
a) A=x2+2y2-6x+8y+25
b)B=x2+3y2+2xy-2x-10y+19
c)C=4x2-2xy+y2-14x-4y+50
d)D=2x2+2y2+2xy-8x-8y+20
Làm được câu nào thì làm, thưởng từ 6sp trở lên~
Bài làm
a) A = x2 + 2y2 - 6x + 8y + 25
A = ( x2 + 6x + 9 ) + 2( y2 + 4y + 4 ) + 8
A = ( x + 3 )2 + 2( y + 2 )2 + 8 > 8
Dấu " = " xảy ra <=> x = -3 ; y = -2.
Vậy AMin = 8 khi x = -3; y = -2
Mấy câu sau tương tự, tự giải theo, bh duyệt bài bên lazi đây,
Tìm GTNN của biểu thức B = 2x^2 + y^2 + 2xy + 6x + 2y + 2015
\(B=2x^2+y^2+2xy+6x+2y+2015\)
\(=x^2+y^2+1+2xy+2y+2x+x^2+4x+4+2011\)
\(=\left(x^2+y^2+1+2xy+2y+2x\right)+\left(x^2+4x+4\right)+2011\)
\(=\left(x+y+1\right)^2+\left(x+2\right)^2+2011\)
Vì \(\left(x+y+1\right)^2+\left(x+2\right)^2\ge0\)nên \(\left(x+y+1\right)^2+\left(x+2\right)^2+2011\ge2011\)
Vậy \(MinB=2011\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(x+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
Min là giá trị nhỏ nhất mà, không biết àk
Tính giá trị nhỏ nhất của biểu thức: A= \(x^2+2y^2+2xy-6x-8y+2024\)
Tìm GTNN của:
a,\(x^2-4x+y^2-2y+10\)
b,\(x^2+y^2-x+6y+15\)
c,\(x^2+2y^2-6x-8y+2xy+5\)
a)\(x^2-4x+y^2-2y+10=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+5\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi x=2;y=1
b) tương tự câu a
c)\(x^2+2y^2-6x-8y+2xy+5=x^2+2y^2+2x\left(y-3\right)-8y+5\)
\(=x^2+2x\left(y-3\right)+\left(y^2-6x+9\right)+\left(y^2-2x+1\right)-5\)
\(=x^2+2x\left(y-3\right)+\left(y-3\right)^2+\left(y-1\right)^2-5\)
\(=\left(x+y-3\right)^2+\left(y-1\right)^2-5\ge-5\)
Dấu "=" xảy ra khi x=2;y=1
Cho A=\(\frac{6x^2z^2}{y^2}+\frac{8y^2z^2}{x^2}+\frac{10x^2y^2}{z^2}\)biết 2xy +yz=3. Tìm GTNN của A