\(E=\frac{6}{5.8}+\frac{22}{8.19}+\frac{24}{19.31}+\frac{140}{31.101}+\frac{198}{101.200}\)
Tính
\(\frac{6}{5.8}+\frac{22}{8.19}+\frac{24}{19.31}+\frac{140}{31.101}+\frac{198}{101.200}\)
tính tổng
A = \(\frac{6}{5.8}+\frac{22}{8.19}+\frac{24}{19.31}+\frac{140}{31.101}+\frac{198}{101.200}\)
ai nhanh dc tick nhé
nhanh dc 5 tick
\(A=\frac{6}{5.8}+\frac{22}{8.19}+\frac{24}{19.31}+\frac{140}{31.101}+\frac{198}{101.200}\)
\(\Rightarrow A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)
\(\Rightarrow A=\frac{1}{5}-\frac{1}{200}\)
\(\Rightarrow A=\frac{39}{200}\)
A=2.(3\5.8+11\8.19+12\19.31+70\31.101+99\101\200)
A=2.(1\5-18+1\8-1\19+....+1\101-1\200)
A=2.(1\5-1\200)
A=2.39\200
A=39\100
Chúc bạn học tốt
TÍNH TỔNG
A = \(\frac{6}{5.8}\)+ \(\frac{22}{8.19}+\frac{24}{19.31}+\frac{140}{31.101}+\frac{198}{101.200}\)
AI NHANH CHO 5 TICK
giữ lời ko làm chó
gọi A = 6 / ( 5*8 ) + ... + 198 / ( 101 * 200 )
=> A / 2 = 3 / ( 5*8 ) + 11 / ( 8 * 19 ) + ... + 99 / ( 101*200 )
A / 2 = 1/5 - 1/8 + 1/8 - 1/11 + ... + 1 / 101 - 1 / 200
A / 2 = 1/ 5 -1 / 200
A / 2 = 39 /200
A = 39 / 100
đã làm bài này rồi , đúng, giờ thì k hộ cái , ko giết đấy
Ta co:
1/2A= 3/5×8 + 11/8×19 + 12/19×31 +70 /31×101+ 99/101×200
1/2A= 1/5 - 1/8 + 1/8 - 1/19 + 1/19 - 1/31 + 1/31 -1/101 + 1/101 - 1/200
1/2A= 1/5 - 1/200
1/2A= 39/200
A= 39/200 ÷ 1/2
A= 39/100
A=6/5.8+22/8.19+24/19.31+140/31.101+198/101.200
A=6/5.8+22/8.19+24/19.31+140/31.101+198/101.200
\(=2\left(\dfrac{3}{5\cdot8}+\dfrac{11}{8\cdot19}+\dfrac{12}{19\cdot31}+\dfrac{70}{31\cdot101}+\dfrac{99}{101\cdot200}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+...+\dfrac{1}{101}-\dfrac{1}{200}\right)\)
\(=2\cdot\dfrac{39}{200}=\dfrac{39}{100}\)
a) Tính tổng A=6/5.8+22/8.19+24/19.31+140/31.101+198/101.200 b) Chứng minh : 1/2^2+1/4^2+1/6^2+...+1/100^2
a/ \(A=\dfrac{6}{5.8}+\dfrac{22}{8.19}+\dfrac{24}{19.31}+\dfrac{198}{101.200}\)
\(=2\left(\dfrac{3}{5.8}+\dfrac{11}{8.19}+\dfrac{12}{19.31}+...+\dfrac{99}{101.200}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+....+\dfrac{1}{101}-\dfrac{1}{200}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{200}\right)\)
\(=\dfrac{39}{100}\)
b/ \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)
Ta có :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...........
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{99.100}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow A< 1-\dfrac{1}{100}< 1\left(đpcm\right)\)
Giải:
a) \(A=\dfrac{6}{5.8}+\dfrac{22}{8.19}+\dfrac{24}{19.31}+\dfrac{140}{31.101}+\dfrac{198}{101.200}\)
\(A=2.\left(\dfrac{3}{5.8}+\dfrac{11}{8.19}+\dfrac{12}{19.31}+\dfrac{70}{31.101}+\dfrac{99}{101.200}\right)\)
\(A=2.\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{101}+\dfrac{1}{101}-\dfrac{1}{200}\right)\)
\(A=2.\left(\dfrac{1}{5}-\dfrac{1}{200}\right)\)
\(A=2.\dfrac{39}{200}\)
\(A=\dfrac{39}{100}\)
b) \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
\(...\)
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Rightarrow\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}...+\dfrac{1}{99}+\dfrac{1}{100}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{99}+\dfrac{1}{100}\)
Bạn tự lm theo đề bài của bạn nhé vì đề bài chỉ thế này thôi!
Tính :
\(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)
\(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)
\(=\frac{1}{5}-\frac{1}{200}\)
\(=\frac{39}{200}\)
1/5-1/8+1/8-1/19+1/19-1/31+1/31-1/101+1/200=1/5-1/200=195/1000=39/200
\(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)=?
cho \(A=\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\) so sánh A với 1
\(\Rightarrow A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)
\(\Rightarrow A=\frac{1}{5}-\frac{1}{200}\)
\(\Rightarrow A=\frac{39}{200}\)
vì \(\frac{39}{200}< 1\) nên A < 1
\(A=\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)
Áp dụng công thức \(\frac{b-a}{a.b}=\frac{1}{a}-\frac{1}{b}\) với a < b và a khác b khác 0, ta có:
\(A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+...+\frac{1}{101}-\frac{1}{200}\\ =\frac{1}{5}-\frac{1}{200}\\ =\frac{40-1}{200}\\ =\frac{39}{200}\\ \frac{39}{200}< 1\\\Rightarrow A< 1\left(đpcm\right)\)
Chúc bạn học tốt!