cho n thuộc N sao
tìm UCLN của 2n-1 và 9n +4
Tìm UCLN của 2n -1 và 9n+4( n thuộc N)
Gọi d = (2n-1) ;(9n+4) ⇒ 2n-1 ; 9n+4 ⋮ d
⇒ 2 (9n+4) - 9(2n-1) = 18n+8 - 18n+9 = 17 ⋮ d
⇒d=1 hoặc d= 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ⋮ 17 thì ƯCLN(2n-1;9n+4) = 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ∅ ⋮ 17 thì ƯCLN (2n-1;9n+4) = 1
Gọi d = (2n-1) ;(9n+4) ⇒ 2n-1 ; 9n+4 ⋮ d
⇒ 2 (9n+4) - 9(2n-1) = 18n+8 - 18n+9 = 17 ⋮ d
⇒d=1 hoặc d= 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ⋮ 17 thì ƯCLN(2n-1;9n+4) = 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ∅ ⋮ 17 thì ƯCLN (2n-1;9n+4) = 1
Tìm UCLN của 2n-1 và 9n+4( n thuộc N)
a,Chứng tỏ rằng :n +1 và 2n+3 là hai số nguyên tố cùng nhau
b,Tìm UCLN của 2n+1 và 9n+4(n thuộc N sao)
1. a. Tìm UCLN của 2n - 1 và 9n + 4 ( n thuộc n sao)
b. ƯC ( 2n + 1, 3n+ 1)
c. ƯCLN ( 7n + 3, 8n- 1
Giải thế ai hiểu nổi hả trời???
tìm UCLN (2n -1; 9n + 4 ) với n thuộc N
Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1) ⋮ d ⇒ 17 ⋮ d ⇒ d ∈ {1, 17}.
Ta có 2n - 1 ⋮ 17 ⇔ 2n - 18 ⋮ 17 ⇔ 2(n - 9) ⋮ 17 ⇔ n - 9 ⋮ 17 ⇔ n = 17k + 9 (k ∈N).
Nếu n = 17k + 9 thì 2n - 1 ⋮ 17, và 9n + 4 = 9(17k + 9) + 4 = bội 17 + 85 ⋮ 17, do đó (2n - 1, 9n + 4) = 17.
Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó (2n - 1, 9n + 4) = 1.
Gọi d = ƯCLN(2n - 1; 9n + 4) (d thuộc N*)
=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d
=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d
=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d
=> (18n + 8) - (18n - 9) chia hết cho d
=> 18n + 8 - 18n + 9 chia hết cho d
=> 17 chia hết cho d
=> d thuộc {1 ; 17}
+ Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17
=> 2n - 1 - 17 chia hết cho 17; 9n + 4 - 85 chia hết cho 17
=> 2n - 18 chia hết cho 17; 9n - 81 chia hết cho 17
=> 2.(n - 9) chia hết cho 17; 9.(n - 9) chia hết cho 17
Mà (2;17)=1; (9;17)=1 => n - 9 chia hết cho 17
=> n = 17.k + 9 (k thuộc N)
Vậy với n = 17.k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 17
Với n khác 17.k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 1
Tìm ƯCLN của 2n-1 và 9n+4(n thuộc N*)
Câu hỏi của Clash Of Clans - Toán lớp 6 - Học toán với OnlineMath
Tham khảo nhé !
Đặt UCLN ( 2n - 1 ; 9n + 4 ) = d
=> 2n - 1 chia hết cho d ; 9n + 4 chia hết cho d
=> 9 ( 2n - 1 ) chia hết cho d ; 2 ( 9n + 4 ) chia hết cho d
=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d
=> 18n - 9 - 18n - 8 chia hết cho d
=> - 15 chia hết cho d
=> d thuộc Ư ( -15 ) = { -15 ; - 5 ; - 3 ; - 1 ; 1 ; 3 ; 5 ; 15 }
Mà d lớn nhất => d = 15
Vậy UCLN ( 2n - 1 ; 9n + 4 ) = 15
Tìm ƯCLN của 2n-1 và 9n + 4 (n thuộc N*)
Tìm ước chung lớn nhất của 2n-1 và 9n+4 (n thuộc N)
Tìm ƯCLN của 2n-1 và 9n+4(n thuộc N)
Gọi ƯCLN( 2n - 1 ; 9n + 4 ) là d
=> 2n - 1 chia hết cho d => 9( 2n - 1 ) chia hết cho d => 18n - 9 chia hết cho d
9n + 4 chia hết cho d => 2( 9n + 4 ) chia hết cho d => 18n + 8 chia hết cho d
=> ( 18n - 9 ) - ( 18n + 8 ) chia hết cho d
=> 1 chia hết cho d
=> d thuộc { -1 ; 1 }
=> ƯCLN( 2n - 1 ; 9n + 4 ) là 1
Gọi d là ƯCLN(2n - 1; 9n + 4)
=> 2n - 1 ⋮ d và 9n + 4 ⋮ d
=> 9(2n - 1) ⋮ d và 2(9n + 4) ⋮ d
=> 18n - 9 ⋮ d và 18n + 8 ⋮ d
=> (18n + 8) - (18n - 9) ⋮ d
=> 17 ⋮ d => d = 17
Vậy ƯCLN(2n - 1; 9n + 4) = 17
The lonely cancer sai rồi
(18n - 9) - (18n + 8) = - 17 chứ sao = 1 được !!!