Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần vũ hoàng phúc
Xem chi tiết
Phùng Công Anh
11 tháng 6 2023 lúc 10:12

\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)

Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)

\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)

----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)

Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)

Lê Anh
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
nguyentancuong
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
30 tháng 8 2019 lúc 11:15

Đặt \(a-b=x;b-c=y;c-a=z\)

\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)

Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)

\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

Trần Anh
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết
hoàng thị huyền trang
16 tháng 7 2018 lúc 14:52

Ta có: \(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)\(\Leftrightarrow a\left(c^2+b^2\right)=c\left(a^2+b^2\right)\)\(\Leftrightarrow ac^2+ab^2=a^2c+b^2c\Leftrightarrow ac\left(c-a\right)-b^2\left(c-a\right)=0\)

\(\Leftrightarrow\left(c-a\right)\left(ac-b^2\right)=0\)

Vì \(a\ne c\)nên \(c-a\ne0\)

Do đó \(ac-b^2=0\Leftrightarrow ac=b^2\Rightarrow\sqrt{ac}=b\)

Giả sử \(a^2+b^2+c^2\)là số nguyên tố

Ta có \(a^2+b^2+c^2=a^2+ac+c^2=\left(a+c\right)^2-ac=\left(a+c\right)^2-b^2\)\(=\left(a-b+c\right)\left(a+b+c\right)\)

\(=\left[\left(\sqrt{a}\right)^2-2\sqrt{ac}+\left(\sqrt{c}\right)^2+\sqrt{ac}\right]\left[\left(\sqrt{a}\right)^2-2\sqrt{ac}+\left(\sqrt{c}\right)^2+3\sqrt{ac}\right]\)

\(\left[\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}\right]\left[\left(\sqrt{a}-\sqrt{c}\right)^2+3\sqrt{ac}\right]\)

Vì \(a^2+b^2+c^2\)là số nguyên tố nên có một ước số là 1

Mà \(\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}< \left(\sqrt{a}-\sqrt{c}\right)^2+3\sqrt{ac}\)

nên \(\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}=1\Leftrightarrow\left(\sqrt{a}-\sqrt{c}\right)^2=1-\sqrt{ac}\)

Vì \(a\ne c\Rightarrow\sqrt{a}\ne\sqrt{c}\Rightarrow\sqrt{a}-\sqrt{c}\ne0\)\(\Rightarrow\left(\sqrt{a}-\sqrt{c}\right)^2>0\)

Do đó \(1-\sqrt{ac}>0\Rightarrow\sqrt{ac}< 1\Rightarrow ac< 1\)(1)

Mà \(a^2+b^2>0\)và \(c^2+b^2>0\)nên \(\frac{a^2+b^2}{c^2+b^2}>0\Rightarrow\frac{a}{c}>0\Rightarrow\)a, c cùng dấu \(\Rightarrow ac>0\)(2)

Từ (1), (2) suy ra \(0< ac< 1\)

Mà a,c là số nguyên nên ac là số nguyên 

Do đó không có giá trị a,c thỏa mãn

suy ra điều giả sử sai

Vậy \(a^2+b^2+c^2\) không thể là số nguyên tố

gunny
1 tháng 12 2019 lúc 19:45

tự giải vl

Khách vãng lai đã xóa
Hòa An
11 tháng 5 2020 lúc 22:11

Ể vậy là tự hỏi tự trả lời luôn kì vậy ai chơi

Khách vãng lai đã xóa
Hoàng Phúc
Xem chi tiết
Akai Haruma
17 tháng 9 2019 lúc 13:59

Lời giải:

Điều kiện đề bài đã cho tương đương với:

\(\frac{a}{a+b}+\frac{b}{b+c}-1+\frac{c}{c+d}+\frac{d}{a+d}-1=0\)

\(\Leftrightarrow \frac{a}{a+b}-\frac{c}{b+c}+\frac{c}{c+d}-\frac{a}{a+d}=0\)

\(\Leftrightarrow a(\frac{1}{a+b}-\frac{1}{a+d})+c(\frac{1}{d+c}-\frac{1}{b+c})=0\)

\(\Leftrightarrow \frac{a(d-b)}{(a+b)(a+d)}+\frac{c(b-d)}{(d+c)(b+c)}=0\)

\(\Leftrightarrow (d-b)(\frac{a}{(a+b)(a+d)}-\frac{c}{(c+d)(c+b)})=0\)

\(\Leftrightarrow \frac{(d-b)(a-c)(bd-ac)}{(a+b)(a+d)(c+d)(c+b)}=0\)

\(\Rightarrow (d-b)(a-c)(bd-ac)=0\)

Mà $a,b,c,d$ đôi một khác nhau nên suy ra $bd-ac=0$

$\Rightarrow bd=ac$

$\Rightarrow abcd=(bd)^2$ là số chính phương với mọi $a,b,c,d$ nguyên dương.

Akai Haruma
1 tháng 10 2019 lúc 0:34

Lời giải:

Điều kiện đề bài đã cho tương đương với:

\(\frac{a}{a+b}+\frac{b}{b+c}-1+\frac{c}{c+d}+\frac{d}{a+d}-1=0\)

\(\Leftrightarrow \frac{a}{a+b}-\frac{c}{b+c}+\frac{c}{c+d}-\frac{a}{a+d}=0\)

\(\Leftrightarrow a(\frac{1}{a+b}-\frac{1}{a+d})+c(\frac{1}{d+c}-\frac{1}{b+c})=0\)

\(\Leftrightarrow \frac{a(d-b)}{(a+b)(a+d)}+\frac{c(b-d)}{(d+c)(b+c)}=0\)

\(\Leftrightarrow (d-b)(\frac{a}{(a+b)(a+d)}-\frac{c}{(c+d)(c+b)})=0\)

\(\Leftrightarrow \frac{(d-b)(a-c)(bd-ac)}{(a+b)(a+d)(c+d)(c+b)}=0\)

\(\Rightarrow (d-b)(a-c)(bd-ac)=0\)

Mà $a,b,c,d$ đôi một khác nhau nên suy ra $bd-ac=0$

$\Rightarrow bd=ac$

$\Rightarrow abcd=(bd)^2$ là số chính phương với mọi $a,b,c,d$ nguyên dương.

Ta có đpcm.

Diệp Nguyễn Thị Huyền
Xem chi tiết
alibaba nguyễn
29 tháng 7 2021 lúc 12:40

Ta có:

\(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)

\(\Leftrightarrow ac^2+ab^2=ca^2+cb^2\)

\(\Leftrightarrow ac\left(c-a\right)=b^2\left(c-a\right)\)

\(\Leftrightarrow ac=b^2\)

Thế vô ta được

\(a^2+b^2+c^2=a^2+2ac+c^2+b^2-2ac\)

\(=\left(a+c\right)^2-b^2=\left(a+c-b\right)\left(a+c+b\right)\)

Làm nốt

Khách vãng lai đã xóa
Hoàng Phúc
Xem chi tiết
lê duy mạnh
30 tháng 9 2019 lúc 21:31

cm ad=bc là đc

Nguyễn Linh Chi
27 tháng 10 2019 lúc 19:34

Câu hỏi của CTV - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa

https://olm.vn/hoi-dap/detail/233583386184.html

ĐÂY CÓ NHA!

Khách vãng lai đã xóa
CTV
Xem chi tiết
Nguyễn Việt Hoàng
27 tháng 10 2019 lúc 19:31

Ta có :

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)

\(\Rightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)+d\left(a+b\right)\left(b+c\right)=0\)( vì c khác a )

\(\Leftrightarrow abc-acd+bd^2-b^2d=0\)

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac-bd=0\)

\(\Leftrightarrow ac=bd\)

\(\Rightarrow abcd=\left(ac\right)\left(bd\right)=\left(ac\right)^2\)

Vậy ......................................

Khách vãng lai đã xóa