Tìm tỉ số phần trăm của:
\(4\frac{1}{3}\)và\(5\frac{7}{9}\)
Tìm tỉ số phần trăm của tổng của A và B biết:
\(A=\left(\frac{1}{100}+\frac{25}{75}+1+3+100\right)\times12.25\%\)\(+\frac{3}{100}\div\frac{1}{300}\)
\(B=12^{\frac{9}{2}}\times195\frac{7}{5}\)\(\div1000\times\frac{1}{4}\)
Tìm tỉ số phần trăm của hai số sau:
a) \(1\frac{5}{8}\)và \(3\frac{1}{4}\) b) 12,5 và 2,5
a) Tỉ số phần trăm của \(1\frac{5}{8}\)và \(3\frac{1}{4}\)là :
\(\left(1\frac{5}{8}:3\frac{1}{4}\right)\times100=50\%\)
b) Tỉ số phần trăm của 12,5 và 2,5 là :
\(\left(12,5:2,5\right)\times100=500\%\)
Đáp số : a) 50%
b) 500 %
_Chúc bạn học tốt_
Bài 1: (1đ) Tìm tỉ số phần trăm của hai số sau:
a)\(1\frac{5}{8}\)và \(3\frac{1}{4}\)
b) 12,5 và 2,5
a , Tỉ số phần trăm của hai số đó là :
\(1\frac{5}{8}:3\frac{1}{4}\times100=50\%\)
b , Tỉ số phần trăm của 2 số đó là :
12,5 : 2,5 x 100 = 500%
Tìm tỉ số phần trăm của A và B biết:
\(A=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+.....+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}}\) \(B=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{500}}\)
Tìm tỉ số phần trăm của :
2 và 3 phần 4 và 3 và 4 phần 7
18 và 4 phần 5
2+3/4=2,75=11/4
3+4/7=25/7
=>11/4:25/7=77/100
Giải thích các bước giải:
Ta có:
3:4/7 × 100=525%
Tìm tỉ số phần trăm của 0,6 và \(\frac{4}{5}\)là
Thanksss ---
TL :
\(\frac{4}{5}=0,8\)
Suy ra tính tỉ số phần trăm là :
\(0,6:0,8=0,75=75\%\)
Đáp số : 75 %
Cho M = \(\frac{\left(\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\right)}\);
N = \(\frac{\left(92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}\right)}{\left(\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{500}\right)}\)
Tìm tỉ số phần trăm của M và N
Ta có :
M = \(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{91}+1\right)+...+\left(\frac{98}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(100\)
N = \(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{8.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}\)
N = \(40\)
\(\Rightarrow\)M : N = \(\frac{100}{40}\%=250\%\)
\(M=\frac{1+(\frac{1}{99}+1)+(\frac{2}{98}+1)+(\frac{3}{97}+1)+...+(\frac{98}{2}+1)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(M=\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(M=\frac{100\cdot(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2})}{(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100})}=100\)
\(N=\frac{(1-\frac{1}{9})+(1-\frac{2}{10})+(1-\frac{3}{11})+...+(1-\frac{92}{100})}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
\(N=\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}=\frac{8(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100})}{\frac{1}{5}(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100})}=40\)
\(M:N=\frac{100}{40}=250\%\)
M.n giúp mình bài này vs!
M=\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
N=\(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
Tìm tỉ số phần trăm của M và N
Lm nhanh nhé!
mk nghĩ là nguyễn việt hoàng làm sai rồi!
Đặt: \(M=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(=\frac{1-\left[\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\right]}{1-\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right]}\)
\(=\frac{1-\frac{99}{1}}{1-\frac{1}{100}}\)
\(M=\frac{-98}{99}\)
Đặt \(N=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
\(=\frac{92+\left[\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}\right]}{1-\left[\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}\right]}\)
\(=\frac{92+\frac{92}{100}}{1-\frac{1}{500}}\)
\(=\frac{92+\frac{92}{100}}{\frac{499}{500}}\)
Tự làm tiếp đi!