phan tich dt thanh ntu
A=21x^4+3x^3+2019x^2+3x+2018
Phan tich da thuc thanh nhan tu (x²+3x)^2+7x²+21x+10
Phan tich 3x2-x-4 thanh phan tu
\(3x^2-x-4\)
\(=3x^2+3x-4x-4\)
\(=3x\left(x+1\right)-4\left(x+1\right)\)
\(=\left(3x-4\right)\left(x+1\right)\)
phan tich da thuc thanh nhan tu 1-3x-x^3+3x^2
\(1-3x-x^3+3x^2\)\(=\left(1-x^3\right)+\left(3x^2-3x\right)\)
\(=\left(1-x\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-x^2-x-1\right)=\left(x-1\right)\left(2x-x^2-1\right)\)
phan tich thanh nhan tu
x3+3x2-4
phan tich da thuc thanh nhan tu :x^5+2x^4+3x^3+2x^2+2x+1
x^5+2x^4+2x^3+2x^2+2x+1
=(x^5+x^4)+(x^4+x^3)+(x^3+x^2)+(x^2+x)+(x+1)
=x^4(x+1)+x^3(x+1)+x^2(x+1)+x(x+1)+(x+1)
=(x+1)(x^4+x^3+x^2+x+1)
phan tich da thuc thanh nhan tu
a,x4+2019x2+2018x+2019
b,(x+2)*(x+3)*(x+4)*(x+5)-24
\(x^4+2019x^2+2018x+2019\)
\(=x^4+x^2+1+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)
\(B=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt: \(x^2+7x+10=t\)Khi đó B trở thành:
\(B=t\left(t+2\right)-24\)
\(=t^2+2t-24=\left(t-4\right)\left(t+6\right)\)
đến đây bạn thay trở lại
phan tich thanh nhan tu x2-3x+4=?
x2-4x+x+4
=x2+x-4x+4
=x(x+1)-4(x+1)
=(x+1)(x-4)
phan tich thanh nhan tu x2-3x+4=?
\(x^2-3x+4\)
\(=x^2+x-4x+4\)
\(=\left(x^2+x\right)-\left(4x+4\right)\)
\(=x\left(x+1\right)-4\left(x+1\right)\)
\(=\left(x-4\right)\left(x+1\right)\).
phan tich thanh nhan tu 3x-7canx+4
\(3x-7\sqrt{x}+4=3x-4\sqrt{x}-3\sqrt{x}+4=\sqrt{x}\left(3\sqrt{x}-4\right)-\left(3\sqrt{x}-4\right)=\left(3\sqrt{x}-4\right)\left(\sqrt{x}-1\right)\)
\(3x-7\sqrt{x}+4=3x-3\sqrt{x}-4\sqrt{x}+4\)
\(=3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)\)
\(=\left(3\sqrt{x}-4\right)\cdot\left(\sqrt{x}-1\right)\)
\(3x-7\sqrt{x}+4=3x-3\sqrt{x}-4\sqrt{x}+4=3.\left(\sqrt{x}\right)^2-3\sqrt{x}-4\sqrt{x}+4=3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=\left(3\sqrt{x}-4\right)\left(\sqrt{x}-1\right)\)