Chứng tỏ 10^2015+2 là hợp số.
Bài 2:chứng tỏ rằng 3n+2 và2n +1 là hai số nguyên tố cùng nhau ( n thuộc N)
chứng tỏ rằng hai số n+1 và 3n+2(n thuộc N)là hai số nguyên tố cùng nhau
Gọi d là ƯCLN(n+1,3n+2)
=> n+1 chia hết cho d => 3(n+1) chia hết cho d => 3n+3 chia hết cho d
3n+2 chia hết cho d
=> [(3n+3)-(3n+2)] chia hết cho d
1 chia hết cho d
=> d thuộc {-1;1}
mà d lớn nhất => d = 1
=> ƯCLN(n+1,3n+2) = 1
=> n+1 và 3n+2 là 2 số nguyên tố cùng nhau (đpcm)
chứng tỏ rằng hai số tự nhiên 3n + 2 và 5n + 3 ( n thuộc N*) là 2 số nguyên tố cùng nhau ?
chứng tỏ rằng 2 số n+1 và 3n+4 (n thuộc N) là 2 số nguyên tố cùng nhau
Chứng tỏ rằng 2 số n + 1 và 3n + 4 ( n thuộc N ) là 2 số nguyên tố cùng nhau
- Nếu n là số chẵn thì n + 1 là số chẵn => 3n + 4 là số lẻ.
- Nếu n là số lẻ thì 3n + 4 là số chẵn => n + 1 là số lẻ.
Vậy, n + 1 là 3n + 4 là hai số nguyên tố cùng nhau.
gọi a là Ucln của 3n+4 và n+1
3n+4:a
n+1=3(n+1):a+3n+3
Vậy (3n+4)-(3n+3) :a
3n+4-3n-3 :a
=1:a
Vậy 3n+4 và n+1 là số nguyên tố cùng nhau
gọi (n+1 ,3n+4)là d
n+1 chia hết cho d
3n+4 chia hết cho d
3(n+1)chia hết cho d
3n+4 chia hết cho d
3n+4-13n+3 chia hết cho d
1chia hết cho d
vậy n+1 , 3n+4 là 2 số nguyên tố cùng nhau
chứng tỏ rằng hai số n+1 va 3n+4(n thuộc N )là hai số nguyên tố cùng nhau
Gọi ƯCLN(n+1,3n+4)=d
Ta có: n+1 chia hết cho d=>3.(n+1) chia hết cho d=>3n+3 chia hết cho d
3n+4 chia hết cho d
=>3n+4-(3n+3) chia hết cho d
=>1 chia hết cho d
=>d=Ư(1)=1
=>ƯCLN(n+1,3n+4)=1
=>n+1 và 3n+4 là hai số nguyên tố cùng nhau
Chứng tỏ rằng hai số n + 1 và 3n + 4 (n thuộc N) là hai số nguyên tố cùng nhau.
gọi UCLN(n+1;3n+4) là d
=>3n+4 chia hết cho d
=> n+1 chia hết cho d
=>3(n+1) chia hết cho d
=>3n+3 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+1;3n+4)=1
=>n+1 và 3n+4 nguyên tố cùng nhau
Chứng tỏ rằng hai số n + 1 và 3n + 4 (n thuộc N) là hai số nguyên tố cùng nhau.
n+1 và 3n+4 là 2 số nguyên tố cùng nhau khi ƯCLN(n+1;3n+4)=1
Gọi ƯCLN(n+1;3n+4)=d
=> [(n+1)+(3n+4)] chia hết cho d
=> 1 chia hết cho d => d=1
=> ƯCLN(n+1;3n+4)=1
Vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau
Gọi d là ước chung cua n+1 và 3n+4
Ta có n+1 :d và 3n +4:d
Suy ra (3n+4)-(3n+3):d suy ra1:d suy ra d=1
Vậy n+`1 và 3n+4 la hai số nguyên tố cùng nhau
chứng tỏ rằng hai số n+1 và 3n+4 (n thuộc N) là 2 số nghuyên tố cùng nhau
Chứng tỏ rằng n+1 và 3n+4 (n thuộc N) là hai số nguyên tố cùng nhau
Giải:
Gọi \(d=UCLN\left(n+1;3n+4\right)\)
Ta có:
\(n+1⋮d\Rightarrow3n+3⋮d\)
\(3n+4⋮d\)
\(\Rightarrow3n+4-3n+3⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=UCLN\left(n+1;3n+4\right)=1\)
\(\Rightarrow n+1\) và 3n + 4 là 2 số nguyên tố cùng nhau
Vậy...
CMR: n+1 & 3n+4 là 2 số nguyên tố cùng nhau
G/s: ƯCLN(n+1;3n+4) = d
Ta có:
n+1 =>3.(n+1) =>3n+3
3n+4=>1.(3n+4)=>3n+4
=> (3n+4) - (3n+3) \(⋮\) d
=> 3n+4 - 3n-3 \(⋮\) d
=> 1 \(⋮\) d => d \(\in\) ƯC(1) = \(\left\{1\right\}\)
KL: Vậy n+1 & 3n+4 là 2 số nguyên tố cùng nhau