cho m,n là các số nguyên tố cùng nhau, m chẵn.tìm ước chung lớn nhất cua m^2+n^2 và m^3+n^3
BÀI 1 :cho m và n thuộc N* thỏa (m,n)=1 tìm Ước chung lớn nhất của 2 số (4m+3n ; 5m + 2n)
BÀI 2: cho n là số tự nhiên bất kì chứng minh : ( 2n+5) là 2 số nguyên tố cùng nhau.
câu 1 :
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
cho a và b là 2 số nguyên tố cùng nhau thõa man a=2.n +3;b=3.n+1 khi đó ước chung lớn nhất của a và b là
ĐÃ LÀ NGUYÊN TỐ CÙNG NHAU THÌ ĐƯƠNG NHIÊN ƯỚC CHUNG LỚN NHẤT CỦA CHÚNG LÀ 1 RỒI CÒN GÌ NỮA
Bài 6 : Chứng minh rằng các số sau đây nguyên tố cùng nhau:
a, 2 số lẻ liên tiếp
b,2n+5 và 3n+7
Bài 7 :Cho ƯCLN (a;b) = 1. CMR
a, ước chung lớn nhất của a và a - b bằng 1
b, a.b và a+b có ước chung lớn nhất bằng 1.
Bài 8 :Cho a,b là 2 số tự nhiên khác 0 không nguyên tố cùng nhau
a=4n+3;b=5n+1 (n thuộc N)
Tìm ước chung lớn nhất của a và b
gọi 2 số lẻ liên tiếp là 2K + 1 và 2K + 3
gọi d là ƯCLN( 2K+1;2K+3)
ta có ƯCLN(2k+1;2k+3)=d \(\Rightarrow\)2k+1 chia hết cho d 2k + 3 chia hết cho d
suy ra 2k+3 - 2k - 1 = 2 chia hết cho d
mà số lẻ ko chia hết cho 2
suy ra d = 1
vậy 2 số lẻ liên thiếp là 2 số nguyên tố cùng nhau
viết chương trình python nhập 2 số M và N kiểm tra có phải là nguyên tố cùng nhau ?
vd: M =15;N=75 là nguyên tố cùng nhau vì có cùng ước là 3;5 là 2 số nguyên tố
def kiem_tra_nguyen_to(n):
if n < 2:
return False
for i in range(2, int(n ** 0.5) + 1):
if n % i == 0:
return False
return True
def kiem_tra_nguyen_to_cung_nhau(m, n):
if kiem_tra_nguyen_to(m) and kiem_tra_nguyen_to(n):
return True
return False
M = int(input("Nhập số M: "))
N = int(input("Nhập số N: "))
if kiem_tra_nguyen_to_cung_nhau(M, N):
print("Hai số", M, "và", N, "là hai số nguyên tố cùng nhau.")
else:
print("Hai số", M, "và", N, "không phải là hai số nguyên tố cùng nhau.")
Cho 2 STN m và n thỏa mãn (m+1)/n + (n+1)/n là số nguyên. Cmr: ước chung lớn nhất của m, n ko lớn hơn căn (m+n)
Bài 1 Xét phân số A= \(\frac{n^2+4}{n+5}\).Hỏi có bao nhiêu số tự nhiên n trong khoảng từ 1 đến 2005 sao cho phân số A chưa tối giản.
Bài 2 Cho m, n là hai số tự nhiên nguyên tố cùng nhau. Hãy tìm ước chung lớn nhất của hai số A= m+n và B=\(m^2+n^2\)
Giả sử: d=(m+n,m2+n2)d=(m+n,m2+n2)
⇒⎧⎨⎩m+n⋮dm2+n2⋮d⇒{m+n⋮dm2+n2⋮d
⇒⎧⎨⎩m+n⋮d(m+n)2−2mn⋮d⇒{m+n⋮d(m+n)2−2mn⋮d
⇒⎧⎨⎩m+n⋮d2mn⋮d⇒{m+n⋮d2mn⋮d
⇒⎧⎨⎩2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d⇒{2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d
⇒⎧⎨⎩2m2⋮d2n2⋮d⇒{2m2⋮d2n2⋮d
d|(2m2,2n2)=2(m2,n2)=2d|(2m2,2n2)=2(m2,n2)=2
⇒d=1⇒d=1 hoặc d=2d=2
- Nếu m,nm,n cùng lẻ thì d=2d=2
- Nếu m,nm,n khác tính chẵn lẻ thì d=1
Cho hai số tự nhiên a và b được phân tích thành các thừa số nguyên tố có dang a= m x n2 b = n x m2 với m, n là các số ngyên tố . khẳng định nào sau đâu là đúng
A. a và b có 3 ước chung
B. a và b có 2 ước chung
C. a và b có 4 ước chung
D. a và b có 5 ước chung
ai nhanh mk tick
ý C chác chắn 100% luôn. Mình vừa thi violympic xong.k cho mình nha.
B đúng.Mình vừa làm xong đúng đó!
Click cho mình nha !
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.