9x =5y
và -2x +x 3y =-51
mik cần kết quả
giúp mik nha
C/M rằng nếu 2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17 và ngược lại nếu 9x+5y chia hết cho 17 thì 2x+3y chia hết cho 12 [x,y thuộc N
+, Nếu 2x+3y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 26x+39y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 26x+39y-17x-34y chia hết cho 17
=> 9x+5y chia hết cho 17
+, Nếu 9x+5y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 9x+5y+17x+34y chia hết cho 17
=> 26x+39y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 2x+3y chia hết cho 17 ( vì 13 và 17 là 2 số nguyên tố cùng nhau )
=> ĐPCM
Tk mk nha
Tìm x,y,z biết:
4x=3y, 5y=3z và 2x-3y+z=6
làm cả bài lun hộ mik nha
4x=3y, 5y=3z=>\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có;
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
suy ra:
\(\frac{x}{9}=3\Rightarrow x=27\)
\(\frac{y}{12}=3\Rightarrow y=36\)
\(\frac{z}{20}=3\Rightarrow z=60\)
4x = 3y => \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{9}=\frac{y}{12}\) (1)
5y = 3z => \(\frac{y}{3}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{20}\) (2)
(1);(2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{2.9-3.12+20}=\frac{6}{2}=3\)
=> x = 3.9 = 27; b = 3.12 = 36; c = 3.20 = 60
Bt:quy đồng mẫu các phân thức sau:
a, 3y+1/9x^3y ; x+y/4xy^3 ; x+2/6x^5y^2
b. 3x-5y/x^3-y^3 ; x^2/2x^2y+2xy^2 ; y/3x^2-3xy. Mn giúp vs ạ,mình đang cần gấp :(
chứng tỏ rằng 2x+3y chia hết cho 17 khi và chỉ khi 9x+5y chia hết cho 17.
làm ngay nha!! tui đang vội!!
Ta có: 9x+5y⋮ 17
=> 4(9x+5y)⋮ 17
<=>36x+20y⋮ 17
<=> 2x+34x+3y+17y⋮ 17
=>(2x+3y)+(34x+17y)⋮ 17
Vì 34x+17y⋮ 17
nên 2x+3y⋮ 17
Chúc bạn học tốt
Chứng minh x,y thuộc z:2x + 3y chia hết cho 17 và 9x + 5y chia hết cho 17
Chứng minh rằng 2x +3y chia hết cho 17 thì (2x+3y)(9x+5y) chia hết cho 289. Với (x, y thuộc N)
a, Tìm x, biết \(|\left|2x+1\right|-2|\) = 3
b, Chứng tỏ rằng 2x + 3y chia hết cho 17 khi và chỉ khi 9x + 5y chia hết cho 17.
a) Ta có: \(\left|\left|2x+1\right|-2\right|=3\)
\(\Leftrightarrow\left|2x+1\right|-2=3\)
\(\Leftrightarrow\left|2x+1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
cho x,y thuộc Z và 2x +3y chia hết cho 17
C/m 9x+5y chia hết cho 17