Cho a >b > 0 và 2(a2 +b2) = 5ab
Tính P=\(\frac{3a-b}{2a+b}\)
Cho 4a2 + b2 = 5ab với b > 2a > 0. Tính giá trị của biểu thức 5ab / 3a^2+2b^2
Ta có:
\(4a^2+b^2=5ab\Leftrightarrow4a^2+b^2-4ab-ab=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\4a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b\left(ktm\right)\\4a=b\left(tm\right)\end{matrix}\right.\)
\(\Rightarrow4a=b\)
\(\Rightarrow\dfrac{5ab}{3a^2+2b^2}=\dfrac{5a.4a}{3a^2+2.\left(4a\right)^2}=\dfrac{20a^2}{3a^2+32a^2}\)
\(=\dfrac{20a^2}{35a^2}=\dfrac{4}{7}\)
\(4a^2+b^2=5ab\)
\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Rightarrow b=4a\left(do.a\ne b\right)\)
\(\dfrac{5ab}{3a^2+2b^2}=\dfrac{20a^2}{3a^2+32a^2}=\dfrac{4}{7}\)
Tính p = $\frac{2a+b}{3a-b}$ với a>b>0 và 2($^2+b^2$)=5ab
cho 10a2-3b2+5ab=0 và 9a2-b2 khác 0 tính giá trị biểu thức Q= \(\frac{2a-b}{3a-b}\)+ \(\frac{5b-a}{3a+b}\)
tính B=\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)biết 10a2-3b2+5ab=0 và 9a2 -b2 khắc0
ĐK \(9a^2-b^2\ne0\)
Ta có B =\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{\left(3a+b\right)\left(3a-b\right)}\)
=\(\frac{6a^2+2ab-3ab-b^2+15ab-5b^2-3a^2+ab}{9a^2-b^2}\)
=\(\frac{3a^2+15ab-6b^2}{9a^2-b^2}=\frac{3\left(a^2+5ab-2b^2\right)}{9a^2-b^2}\)
Từ \(10a^2-3b^2+5ab=0\Rightarrow5ab=3b^2-10a^2\)
\(\Rightarrow B=\frac{3\left(a^2+3b^2-10a^2-2b^2\right)}{9a^2-b^2}=\frac{3\left(-9a^2+b^2\right)}{9a^2-b^2}=-3\)
Vậy B =-3
cho 4a2 +b2 =5ab và 2a>b>0 . tính P = ab/4a2-b2
=>4a^2-5ab+b^2=0
=>(a-b)(4a-b)=0
=>a=b hoặc b=4a(loại)
=>P=b^2/3b^2=1/3
Cho biểu thức: \(P=\frac{2a+b}{3a-b}\). Với a>b>0 và \(2\left(a^2+b^2\right)=5ab\). Tính P
Ta có
\(2a^2+2b^2=5ab\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-ab-4ab+2b^2=0\)
\(\Leftrightarrow a\left(2a-b\right)-2b\left(2a-b\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}}\)
Vì a>b>0 nên 2a>b
\(\Rightarrow a=2b\)
Thay vào P ta có
\(P=\frac{2.2b+b}{3.2b-b}=\frac{5b}{5b}=1\)
Cho a>b>0 và 2(a2+b2)=5ab. tính giá trị biểu thức \(P=\frac{3a-b}{2a+b}\)
Ta có : 2(a2 +b2) = 5ab <=> 2a2 - 5ab + 2b2 = 0 <=> 2a2 - 4ab - ab + 2b2 =0 <=> 2a(a - 2b) - b(a - 2b) =0
<=> (2a - b)(a - 2b) = 0 <=> a = 2b hay b = 2a
Vì a > b > 0 nên chỉ xảy ra trường hợp a = 2b. Do đó \(P=\frac{3.2b-b}{2.2b+b}=\frac{5b}{5b}=1\)
cho a>b>0 và 2(a2+b2)=5ab Tính GT của \(P=\frac{3a-b}{2a+b}\)
Ta có: \(2\left(a^2+b^2\right)=5ab\Rightarrow2a^2+2b^2-5ab=0\) 0
\(\Rightarrow2a^2-ab-4ab+2b^2=0\) \(\Rightarrow a\left(2a-b\right)-2b\left(2a-b\right)=0\)
\(\Rightarrow\left(2a-b\right)\left(a-2b\right)=0\) \(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}\Rightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}}\)
TH1: 2b=a thay vào P ta được:
\(P=\frac{3.2b-b}{2.2b+b}=\frac{6b-b}{4b+b}=\frac{5b}{5b}=1\)
TH2: 2a=b \(\Rightarrow P=\frac{3a-2a}{2a+2a}=\frac{a}{4a}=\frac{1}{4}\)
Vậy \(\orbr{\begin{cases}P=1\\P=\frac{1}{4}\end{cases}}\)
bạn ơi, mình sửa lại nhá.
a>b>0 => a=2b (không có th b=2a)
=> P=1
Cho a>b>0 và 2(a^2 + b^2 ) = 5ab
Tính (3a-b) / (2a+b)
vì b > 0
ta chia phương trình cho b^2 :
2(a/b)^2 - 5(a/b) +2 =0
giải phương trình bậc 2 ,ta dc : (a/b) = 2 và (a/b) = (1/2)
xét a = 2b :
thay a=2b vào (1) : 8b^2 +2b-10 = 0
giải b= -(5/4) => a = -(10/4)
b = 1 => a = 2
thay a,b vào (a+b)/(a-b) ==> đáp số là 3
xét b = 2a : (tương tự) ==> đáp số là (1/3)
cho a>b>o thoã mãn 2a^2+2b^2-5ab=0.tính a=3a+b/3a-b